

CubeSat Club 10/13/2011

Ms. Eloisa de Castro Princeton Satellite Systems 6 Market Street, Suite 926 Plainsboro, NJ 08536

PrincetonSATELLITE

Introduce Yourself!

- Name
- Are you a new or returning member?
- What got you interested in joining CubeSat Club?
- What is something you'd like to learn or do at CubeSat Club this year?

Review of Last Year

- Attitude Control
- Power
- Telemetry
- Structures
- Testing

Teams

- A Control Points the spacecraft in the right direction
- B Power Makes sure the satellite always has enough power
- C Mechanisms/Thermal designs all moving parts, makes sure everything stays at the right temperature
- D Telemetry Makes sure we can talk to the CubeSat
- E Payload/Integration designs the experiments on the satellite, works on interfaces between systems

Control

- Attitude: Measure, report, change the CubeSat orientation
- Important!
 - Our Cameras are fixed
 - Must look at the star throughout the mission
 - Cameras on each CubeSat must point to each other
- Tasks:
 - Building magnetic torquers
 - Control software for reaction wheels

Power

- Provides the power supply and transmits the power to all the components in the CubeSat
- Important!
 - All components have power requirements to do their jobs
 - Everything will depend on the CubeSat having power
- Tasks
 - Choose power source, storage, and distribution methods
 - Map out power usage in all possible scenarios

Mechanisms/Thermal

- Moving parts that implement commands from the Control team, parts that take heat away from other components
- Important!
 - Too hot/too cold means it won't work
 - Failed mechanisms mean a failed mission
- Tasks
 - Design/build reaction wheel
 - Model heat dissipation and disturbances
 - Choose the materials that go into the CubeSat

Telemetry

- Send and receive commands and data
- Important!
 - We need to be able to tell the CubeSat what to do
 - All systems depend on telemetry to get their commands
- Tasks
 - Decide what sensors transmitters and receivers we need
 - Set up the ground station
 - Choose the components and design how they will deploy

Payload/Integration

- Use all the sensors to accomplish the mission, make sure components from all systems work together
- Important!
 - We have three goals. We need to make sure all are met
 - If our systems can't work together the mission won't work
- Tasks:
 - Decide on interfaces: how does each system talk to each other—if two groups want different things integration decides what is most important!
 - Testing

Challenge Question

Which of these systems will be essential to completing the mission?

Next Week:

- Everyone will meet
- Finish the testing machine
- You will find out your teams
- Team meeting schedule

 Send your name and your answer to the challenge question to <u>cubesat@psatellite.com</u>

Contact Information

Website:

• http://www.psatellite.com/CubeSat/

E-mail:

• cubesat@psatellite.com

