

CubeSat Club Meeting 10/21/2010

Mr. Michael Paluszek Ms. Eloisa de Castro Princeton Satellite Systems 6 Market Street, Suite 926 Plainsboro, NJ 08536

Last Week

- Attitude Control
- Electricity
- Magnetic Torquers

Electricity

- Electricity = flow of electrons
- Voltage (V)= difference in charge between points
- Current (I)= measure of the flow
- Resistance (R)= difficulty of flow through material
- Power (P)= rate of energy transfer

V=IR

P=IV

Magnetic Torquer

- Running a current through it gives our CubeSat a magnetic field
- CubeSat magnetic field interacts with Earth's magnetic field
- CubeSat rotates into the right position
- If we are using our reaction wheels then the magnetic torquer slows down the wheels
 - We'll learn about reaction wheels in 2 weeks!

Magnetic Torquer

- Produces a torque that can be described using a VECTOR
- Right-hand rule
- Magnitude and direction of our torque depend on:
 - Current vector: our current's magnitude and direction
 - Number of times wire is wound around the torque rod (N)
 - Demagnetization factor (N_d): dependent on rod geometry

$$\tau = \frac{\pi r^2 NI}{\frac{1}{\mu_r} + N_d}$$

Today

- Problem-Solving Tips
- Our Torquer Design
- Testing!

Problem-Solving

- Converting Units
- Using Multiple Equations
- Keeping Track of Variables

Unit Conversion

 Before starting a problem, convert units that are not in standard SI form!

- 3500 mm = ___ m?
 - 3500 mm x <u>1 m</u> = 3.5 m 1000 mm
- 2460 cm² = ___ m²?

Multiple Equations

- Not all the variables we know are in the same equation as the value we are trying to find
- An answer is based on something that we know, but isn't given in the problem
- Rule of Thumb: # equations = # unknowns

System Problems

- Sometimes you will need to determine how one component in a system affects another component. This is exactly what we are doing with magnetic torquers!
- It is important to understand how components work together before doing calculations. If you try to solve a problem you don't understand, you won't get the right answer. Knowing which component each variable applies to will keep you on the right track.
- Take your time! Calculate carefully, not blindly.

Design

- Here are the things we know:
 - Power = 5 Watt
 - Battery = 12 Volts
 - Resistivity = 1.678 x 10⁻⁸ Ohm-meters
 - Maximum Current I_{max} = 0.53 Amps
 - Wire area: A = 0.03 mm²
 - Rod Dimensions: l = 9 cm, r = 0.6 cm
 - $N_d = 0.3564$
 - $\mu_r = 2000 \text{ N/m}^2$
- These are things we want to know:
 - N?
 - Does I exceed I_{max}?
 - What is the torque produced?

Test!

- Build a magnetic torque rod
- Measure the magnetic field it produces
- The magnetic flux should be equal to:

$$B = \underline{\mu_0 \, N \, I}$$

$$l \, \left[(1/\mu_r) + N_d \right])$$
 where
$$\mu_0 = 4\pi \, x \, 10^{-7} \, \left[N - A^{-2} \right]$$
 DO THEY MATCH?