

CubeSat Club Meeting 11/11/2010

Mr. Michael Paluszek Ms. Eloisa de Castro Princeton Satellite Systems 6 Market Street, Suite 926 Plainsboro, NJ 08536

Last Time

- Built two more magnetic torquers
- Tested solar panels

CubeSat Components

- Let's look at what we need to build a CubeSat
- We will break it down by type of component
- Start with structure
 - CubeSat frame supports all the components
 - Provides mounting points for components
 - Attaches to the CubeSat launcher
 - What do you think is important for the structure?

Electronics and Power

- Boards
 - Computer
 - Input/Output
 - Power Supply
 - Command and telemetry
 - Maybe data storage
- Battery
- Solar panels
- Other things you can think of?

Sensors for Control and Nav

- Magnetometer
 - We experimented with the one in the iPhone
- Accelerometer and Gyro (has an internal accelerometer)
 - Pass it around
- Two cameras
 - Pass it around
- Global Positioning Receiver
 - Pass it around

Actuators for Control

- Reaction wheels
 - Will build these soon
- Magnetic torquers
 - We built these

Mechanisms

- Deployment hinge for the magnetometer
- Springs for separation from the launch vehicle
- Maybe deployment hinges for antennas

Communications

- Antenna to communicate with the earth
- GPS antennas for our GPS chips

Thermal

- Radiators on the top and bottom
- Gold foil where we don't have solar panels
 - Gold foil is an insulator
- Where does the heat come from?
 - Sun (but we will have eclipses)
 - Directly
 - Via power consumed by components
- What components produce heat?

Next steps

- Test out reaction wheels
- Build a battery charger
- Connect solar panels, torquers, battery and reaction wheels and control with switches
- Simulate an orbit using the high intensity lights

