

CubeSat Club Meeting 12/02/2010

Mr. Michael Paluszek Ms. Eloisa de Castro Princeton Satellite Systems 6 Market Street, Suite 926 Plainsboro, NJ 08536

Last Time

- Learned about MATLAB
- Compared a Cubesat to Cloudsat

Today

- Starting our flight vehicle design!
- Decide whether to use an air core coil or steel core
- Goal is to produce the desired control torque with the minimum coil mass and power consumption
- Torque from our torquer is the product of the dipole moment times the magnetic field
- T = MB (Torque equals dipole moment times the magnetic field intensity)
- Design our torquers!

Air Coil

- Dipole moment M = NIA
 - A is the coil area (one face of a CubeSat), I is the current in the coil and N is the number of turns of wire
 - One CubeSat face is 10 cm by 30 cm so each loop is 80 cm or 0.8 m in length
 - The area of the coil is 0.03 m² (0.1 m x 0.3 m)
- Compare to the steel core coil
 - $M = NIA/(1/\mu_r + N_d)$, $\mu_r = 2000$ is the N_d demagnetization factor
 - M = 2000 NIA
 - The area of the rod is much smaller!

Mass of Each Torquer

- Air coil mass
 - $m = \rho_{CU} N c \pi a^2$
 - ρ_{Cu} is the density of the copper, a is the radius of the wire, c is the circumference of the coil
- Steel core coil mass
 - $m = \rho_{cu}N(2\pi r)\pi a^2 + \rho_h\pi r^2l$
 - l = 2Na if we don't overlap windings
 - ρ_h is the density of the steel
 - You can simplify this expression!
- ρ_{Cu} = 8960 kg/m³ ρ_{h} = 8200 kg/m³

Power Consumption

- $P = I^2R$
- R = $\rho_w l_w / \pi a^2 \rho_w = 1.678 \times 10^{-8}$ Ohm-meters
 - Notice ρ has a different meaning in this equation!
- For the air coil $l_w = Nc$
- For the steel core $l_w = N2\pi r$

How much torque?

- Magnetic field is B = 2.2 x 10⁻⁵ T (Tesla)
- We need to control disturbances due to solar pressure
- Torque = 2d A 1367 /c
- d is the moment arm
- c is the speed of light 3 x 10⁸ m/s
- 1367 W/m²/c is the solar pressure
- From our model last time d = 0.1 m

Tasks

- Design the torquer for our flight vehicle
- Choose between air or steel core
 - Compute mass and power consumption
- Explain why you chose the air or steel core
- Build an air core torquer
 - Compare with our steel core torquers

