PrincetonSATELLITE

SYSTEMS

CubeSat
Simulation

Princeton Satellite Systems, Inc.
6 Market Street, Suite 926
Plainsboro, NJ 08536

Phone: 609-275-9606
Fax: 609-275-9609
Email: map @psatellite.com
Web: www.psatellite.com

1 Introduction

We can’t test a CubeSat completely on the ground so we must use simulations. If you have ever played a computer
game in which you fly a plane or drive a car you have used a simulation.

2 Differential Equations
Differential equations are used to model the motion of the spacecraft, the motion of the reaction wheels and the charge
in the battery.

A simple example is linear motion at a constant velocity. This is a model of a car moving at a constant speed for
example. The differential equation is

dzx
E = Vg (2'1)
z(0) = g (2-2)

d means “tiny change” This says that the change in the position along the z-axis with respect to time equals the
velocity. The second line says that x at time 0 is . We solve this by integrating

dx = vdt (2-3)
/ dr = / v dt (2-4)
x(0) = xo (2-5)

Since v, is constant we can bring it outside the integrals

/dm = vw/dt (2-6)
z(0)

=1z (2-7)
Jdx=zand [dt=tso
x(t) = vgt + xo (2-8)
In this case the [makes the d go away. This says the z(t) starts at 2y and grows linearly with time, ¢.

The CubeSat equations are more complex and can’t be solved analytically as we just did. They must be numerically
integrated. In the simplest case we say that

Az = vy, At (2-9)
Tpt1 — T = Vp(tpt1 — tg) (2-10)
Tyl = Tk + Vg (thpr — i) (2-11)

where k is the step. £ = 1 for step 1 and k = 2 for step 2.

3 The Spacecraft Model

The spacecraft model consists of the 3 position coordinates

r=| 7y (3-12)

The three velocity components are

Vg
o= v, (3-13)

Vz

The orientation is a quaternion which is a 4 element set that uniquely determines the orientation
R
g=| * (3-14)
qy
qz

You can think of the 4 elements as 3 representing a vector of length 1 (also called a “unit vector”) along the axis of
rotation and one representing the angle about that axis.

We need three angular rates

Wy
w=| w (3-15)
W,
These are like the spin rate of a top.
We need the three angular rates of the reaction wheels
Q,
Q= Q, (3-16)
Q.

and finally the battery charge b. We collect them all into a vector

(3-17)

S E R S 3

This is the CubeSat state vector. Is is a column of numbers with 17 rows and one column. The differential equations
for the CubeSat are i
d—f = f(x,t,u) (3-18)

where u are the inputs due to external forces and torques. f(x,t, u) means “a function of” x, u and ¢.

4 Reaction Wheels

The spacecraft is controlled by reaction wheels. Figure ?? shows the reaction wheel attached to a spacecraft. The
reaction wheel is rotated by an electric motor that is attached to the spacecraft. The wheel rotates in one direction
and the spacecraft rotates in the opposite direction. The spacecraft “reacts”. Thus the name reaction wheel. Cats and
divers twist in the air using the same principal.

Figure 4-1. Reaction wheel attached to a spacecraft. The electric motor turns the wheel and the spacecraft “reacts”
and rotates in the opposite direction.

Spacecraft Axis of Rotation

Spacecraft
Reaction Wheel Axis of Rotation
L
<« |
| Reaction Wheel
Electric Motor

5 Power

The battery is charged by solar pressure. here is the battery equation.

db
7 P, — P, (5-19)
b is the battery charge, P; is the power from the solar arrays and P, is the power consumed by everything on the
CubeSat. This says that the change in power stored in the battery equals the power from the solar cells minus all of he
power consumed on the CubeSat. If you have any portable electronics devices they work just like this. For example
when you are using a cell phone P; = 0. When you hook it into a charger P, = 0. b can never be less than zero and it
will always have a maximum charge, b,,q-

6 The Simulation Script

The script ?? simulates the CubeSat attitude (orientation) dynamics, orbit dynamics, reaction wheels and the battery.
Any line starting with at “%” is a comment line. The remaining lines area all code. At the beginning of the script we
define constants such as a constant to convert radians to degrees

radToDeg = 180/pi;
Letters with a ““.” after them denote a datastructure. This is a convenient way of collecting variables. The following is
an excerpt of the data structure d.

d = struct;
d.mu = 3.98600436e5; % km3/sec2
d.inertiaRWA = (mass/2)+*radius”2; % Polar inertia

For example we can pass all the variables in d to

[xDot, tMag, power] = RHSCubeSatRWA(x, t, d);

by just passing the letter d.

In MATLAB code we can define variables that are arrays or matrices. For example

d.dipole = [0.0;0;0]
is the vector
0
0 (6-20)
0

Semi-colons mean split by row. Commas or spaces mean split by column;

q = [0 0 0]
is the vector
[0 0 0] (6-21)
MATLAB uses the notation
a = 1.23el0
to mean
a=1.23 x 101° (6-22)

The notation

z = MyFunction(x, vy)

means pass the variables x and y to the function MyFunction and return the variable z. MyFunct ion can contain
large amounts of code. This is a way of encapsulating frequently used code.

Listing 1. Models a CubeSat with reaction wheels and a battery. CubeSatRWASimulation.m
1 it Sttt
2 % Demonstrate a CubeSat attitude and power system dynamics.
3% The model includes 3 orthogonal reaction wheels.

7% Copyright (c) 2009-2010 Princeton Satellite Systems, Inc.
8 % All rights reserved.

17 radToDeg = 180/pi;

19 % Simulation duration

21 days = 0.2;%0.2;
22 tEnd = daysx86400;

26 dT =1;
27 nSim = ceil (tEnd/dT);

29 % Gravitational parameter for the earth

31 d = struct;
= 3.98600436e5; % km"3/sec”2

w
S
o
=
=
|

34 % Reaction wheel design

radius
density
thickness
mass
d.inertiaRWA

o

Add power sys

d.power.solarCellNormal =

d.power.solarCellEff = 0.295;
d.power.effPowerConversion = 0.8;

d.power.solarCellArea = 0.1%x0.116%ones(1,8);
d.power.consumption = 4;

d.power.batteryCapacity = 36000; %

% Initial state vector for a circular orbit

X = 6387.165+800; % km

v = sqgrt (d.mu/x) ;

r = [%;0;0]; $ Position vector

v [0;0;v]; % Velocity vector

q [1;0;0;0]; % Quaternion

w = [0;0;01; % Angular rate of spacecraft
c = [0;0;071; % Reaction wheel rate

b = 6000; % Battery state of charge
% State is [position;velocity;quaternion;angular velocity;
% CubeSats are 1 kg per U

x = [r;v;a;wic;bl;

% Start Julian date

d.jD0 = Date2JD([2012 4 5 0 0 0]);

d.rP = 6378.165;

d.mass = 3; % kg

% CubeSat inertia

d.inertia = InertiaCubeSat(type, d.mass);

% Design the PI

.inertia
.max_angle
.accel_sat
.mode

1

.x_roll
.x_pitch
.X_yaw
.gq_target_last
.q_desired_sta
.reset
.body_vector

'O'so's ' '0 '0 T 'O ' T T 'O

% Planet we are

oo

d.planet "ear

% Initialize
gECIToBody
bField
p.eci_vector

0.040;
2700; % Aluminum
0.002; % This is 2

pixradius”2xthickness*density; %

(mass/2) xradius”2;

tem model

D Controller

PIDMIMO(1,

= d.inertia;
0.01;
= [

o O o~
o O O
~e Ne S

~.

(1:4);

te 0;

o
o
i

70;11;

— O X mm——
. o
o

Ss
S
=
=

orbiting

th’;

x(7:10);
QForm(gECIToBody,
Unit (bField) ;

mm

o

$ Polar inertia

1, 0.01,

100;100;1007;

the plotting aray to save time

BDipole(x(1:3),

200, 0.

1, dT

d.4D0

)i

)

Mass from density x volume

[11-1-10000;000011-1-1;0000000O0];

% 27% to 29.5% Emcore http://www.emcore.com/solar_photovoltaics/

360000 J/kg http://en.wikipedia.org/wiki/Lithium-ion_battery

battery charge]

)i

angleError =

xPlot [[x;0;0;0;0;angleError;bField;0;0;0]

% Run the simulation

acos (Dot (p.eci_vector, QTForm (qECIToBody, p.body_vector))) xradToDeg;

zeros (length(x)+11,nSim) 1;

) i

g = 0;
for k = 1:nSim
% Quaternion
GECTToBody = x(7:10)
% Magnetic field - the magnetometer output is proportional to this
bField — QForm(GECIToBody, BDipole(x(1:3), d.3DO+t/86400)
% Control system momentum management
d.dipole = [0.030701; % Amp-turns m"2
% Reaction wheel control
p.eci_vector = Unit (bField);
angleError = acos (Dot (p.eci_vector,QTForm(gECIToBody, p.body_vector))) «radToDeg;
[torque, p] = PID3Axis(gECIToBody, p);
d.tRWA = —-torque;
% A time step with 4th order Runge-Kutta
x - RKA(GRHSCubeSatRWA, x, dT, t, d);
% Get the power
{xDot, tMag, power] = RHSCubeSatRWA(x, £, d);
% Update plotting and time
——— L (16 e inert dmria;
xPlot (:,k+1) [x;power;torque;angleError;bField; hRWA];
t =t + dT;
end

% Plotting

(0:nSim) »dT) ;

vL = {'r_x (km)’ 'r_y (km)’ 'r_z (km)’ 'v_x (km/s)’ 'v_y (km/s)’ 'v_z (km/s)’...
"g_s’" 'g x'" 'qg.y’' 'qg_z' ’"\omega_x (rad/s)’ ’\omega_y (rad/s)’ ’'\omega_z (rad/s)’
"\omega_x (rad/s)’ ’\omega_y (rad/s)’ ’'\omega_z (rad/s)’ 'b (J)’ ’Power (W)’
'T_x (Nm)’” 'T_y (Nm)’ '"T_z (Nm)’ ’Angle Error (deg)’ ’'B_x’ ’'B_y’ ’'B_z’,...
"H_x (Nms)’ 'H_y (Nms)’ ’'H_z (Nms)'’};

% Plotting utility

Plot2D(t, xPlot(1: 3,:), tL, yL(1: 3), ’'CubeSat Orbit’);

Plot2D(t, xPlot(7:10,:), tL, yL(7:10), ’CubeSat ECI To Body Quaternion’);

Plot2D(t, xPlot(11:13,:), tL, yL(11:13), ’'CubeSat Attitude Rate (rad/s)’);

Plot2D(t, xPlot(14:16,:), tL, yL(14:16), ’CubeSat Reaction Wheel Rate (rad/s)’');

Plot2D(t, xPlot(17:18,:), tL, yL(17:18), ’'CubeSat Power’);

Plot2D(t, xPlot(19:22,:), tL, yL(19:22), ’'CubeSat Control Torque’);

Plot2D(t, xPlot(23:25,:), tL, yL(23:25), ’'CubeSat Magnetic Field’);

Plot2D(t, xPlot(26:28,:), tL, yL(26:28), ’'CubeSat RWA Momentum’);

CubeSatRWASimulation.m

