DiffCorr:
--------------------------------------------------------------------------
Solves the least squares problem for
y = h(x)
by linearizing about the reference vector xA:
y = h(xA) + H(xA)(x-xA)
Uses the singular value decomposition to solve the least squares
problem
--------------------------------------------------------------------------
Form:
[x, k, rsvd, cHWH, rank, P, wmr, sr, J, sig, nz] = DiffCorr( f, S0, xA, kx, tol, tolSVD, initCHWH )
--------------------------------------------------------------------------
------
Inputs
------
F [rho,H,W] = f(xA)
S0 A priori state covariance matrix
xA A priori state
kx States to be found
tol Error tolerance
tolSVD SVD tolerance
initCHWH 1 = show condition number of initial HWH
-------
Outputs
-------
x Matrix of state vectors. Each column is one iteration.
k Number of iterations
rsvd Residuals from the least squares
cHWH Condition number of H'WH
rank Rank of the A matrix
P Covariance matrix: inv[S0 + H'WH]
wmr Weighted mean of the residuals
sr Weighted rms deviation of the residuals
J Loss estimate
sig Uncertainty in the estimates
nz Number of measurements used
--------------------------------------------------------------------------
References: Wertz, J.R., Spacecraft Attitude Determination and Control,
Kluwer, 1976, pp. 447-454.
--------------------------------------------------------------------------
Children:
Math: Linear/LSSVD