QuadCost:
--------------------------------------------------------------------------
Finds the alpha that minimizes the quadratic cost functional J
where
x = x0 + alpha*d;
J = (1/2) (rho'*W*rho + 0.5*(x-xA)'*S0*(x-xA))
dJ/dalpha = d'*(S0*(x-xA) - H'*W*rho);
rho = z - h
�h/�x = H
Calls a function fx defined by
[rho,H,W,JL] = fx(x);
rho = y - h
H = �h/�x
W = Residual weighting vector
JL = is a cost adjustment scalar
--------------------------------------------------------------------------
Form:
[J, dJ] = QuadCost( fx, x0, xA, d, S0, amin, amax )
--------------------------------------------------------------------------
------
Inputs
------
fx The name of the function
x0 Current value of x
xA Reference value of x (for S0)
d Alpha*d is the next increment to x
S0 A priori state covariance matrix
xA A priori state
amin Minimum alpha
amax Maximum alpha
-------
Outputs
-------
J Cost
dJ Derivative of the cost
--------------------------------------------------------------------------
Children:
Common: Graphics/NewFig