Nonlinear estimation and control for small-scale wind turbines

Pradeep Bhatta and Michael A. Paluszek
Princeton Satellite Systems, Inc.

33 Witherspoon St, Princeton, NJ 08542, USA
{pradeep,map} @psatellite.com

Abstract:

This paper presents application of nonlinear control and estimation methods for a variable speed
wind energy conversion system (WECS). A low-order, nonlinear model that captures the
dominant dynamics of the wind turbine drive-train is considered. An unscented Kalman filter
(UKF) is used for online estimation of parameters. The control law, derived from an energy-like
Lyapunov function, guarantees system stability for all operating points of the WECS. The
structure of the control law provides physically intuitive guidelines for gain selection. Furthermore,
the robustness properties inherent in all energy-based control approaches is preserved.
Simulations of speed regulation and stiffness estimation are presented.
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1 Introduction

While debates over the causes and consequences of global warming and climate change
continue, there is growing consensus on the benefits of technologies that harvest renew-
able sources of energy. Advances in the areas of computing, communications, and manu-
facturing propel development of novel methods for achieving high extraction efficiencies
that render renewable energy profitable in today’s market. The key to this development is
identification of advanced technologies across disciplines that can be beneficially trans-
ferred or adapted to renewable energy harvesting. In this paper we present an application
of nonlinear control and estimation methods to a model of a small-scale wind energy
conversion system. The motivation for this approach is the need for a versatile control
strategy that can be implemented on relatively inexpensive systems.

There are typically three closely-coupled control objectives for a wind energy conver-
sion system (WECS) [1]: (i) maximum power capture, (ii) mechanical load mitigation,
and (iii) power quality protection. Capturing maximum power is a very important con-
sideration for small-scale WECS operating in an environment with low winds. Transient
and high-frequency must be alleviated to increase the life-span of the system, thereby re-
ducing the total cost of generating wind power. Finally, WECS linked to the grid must
adhere to certain interconnection standards.

To realize the control objectives, variable speed, variable pitch and active yaw control
mechanisms can be employed. Variable speed wind turbines interface electronic con-
verters between the generator and the AC grid, thereby decoupling the rotational speed



from the grid frequency. The speed of the turbine is controlled by adjusting generator
torque. Variable speed operation increases the energy capture at low wind speeds. On
the other hand, variable pitch operation enables efficient power regulation at higher than
rated winds. Having speed and pitch regulation allows realization of the ideal power curve
[1]. Variable pitch operation also alleviates transient loads. Simultaneous control of pitch
and speed above rated wind speed also provides important benefits to the dynamic perfor-
mance of the WECS under high wind conditions. Yaw control is used to maximize wind
energy capture by keeping the rotor of the turbine facing towards the wind.

For the purpose of control design, low-order mathematical models that capture the
dominant system characteristics of the wind turbine will be used. Such models are an-
alytically tractable, and amenable to application of tools from dynamical systems and
control theory. Robust controllers account for modeling uncertainties.

Variable speed and variable pitch control methods have been very popular [2]-[5].

Control systems for many large-scale WECS are based on gain-scheduling techniques
in which the nonlinear model is linearized about a selected set of operating points, and a

linear controller is designed for each of these linear plants. Further a switching algorithm
is determined. Stability, robustness and performance properties of the system cannot be
assessed based on the feedback properties of the family of linear plants. Some of these
issues have been resolved by advanced linear control methods such as [6].

We consider a Lyapunov-based control law for the nonlinear system model. The non-
linear controller can be tuned based on system performance priorities, with guaranteed
stability. The structure of the control law provides physically intuitive guidelines for gain
selection. Furthermore, the robustness properties inherent in all energy-based control ap-
proaches is preserved. Below we present a Lyapunov-based control law for regulating

the tip-speed ratio to enable maximum power tracking for a variable-speed fixed-pitch
WECS.

2 Lyapunov-based drive train control for a variable-speed fixed-pitch WECS

The aerodynamic power P, captured by the rotor of the wind turbine is usually given by
the expression

1
P, = EprQCP(A)W, (1)
where p is the air density, R is the rotor radius, Cp is the power coefficient, v is the
Q{/R is the tip-speed ratio, where (2, is the rotor angular

speed. We note that the power coefficient is a function only of A, since the pitch of the

effective wind speed, and A =

turbine is held constant in our example. Correspondingly the torque in the rotor 7 is



expressed in terms of the torque coefficient Cy = Cp/A:
1
T, = 5pr?GQ(A)V?. 2)

The torque coefficient takes a maximum value Cy__ at a certain optimum tip-speed ration
Amaz- Typically just a discrete set of values for the torque coefficient is available. A good
approximation of the torque coefficient that is commonly employed [1] is a second-order
polynomial of the form:

CQ()‘) = CQ)’FLEL:L‘ o KQ()‘ o AQmam)21 (3)

where K > 0 is a constant.
The dynamic model of the wind turbine drive-train can be described by the following
equations [1]:
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where 6 is the torsion angle depicting the difference in angular positions of the rotor and
generator, {2, is the angular speed of the generator, T} is the generator torque, K and B,
are the stiffness and damping of the transmission respectively, J, and J; are the moments
of inertia of the rotor and generator respectively. For a variable-speed fixed-pitch turbine,
T, regulated by the power generation unit can be considered to be a control input to the
above drive-train dynamics.

The goal of the drive-train control law is to follow a control strategy, specified as a
locus of operating points. The operating points are equilibria of the system modeled by
equation (4). The control strategy, usually chosen based on trade-offs between energy ex-
traction and load alleviation, picks a desired steady rotor speed (2, . for each steady wind
speed V., thereby effectively determining the steady operating torque 7, .. From the first
component of equation (4), the steady generator speed {2y . = {2,.. The corresponding
torsion angle f; . and generator torque 7} . can be calculated by solving the equilibrium

relations corresponding to the last two components of equation (4).
For the purpose of deriving the control law let us rewrite equation (4) in terms of

deviations from the operating point:
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where (.) denotes the variable minus its value at the operating point. The equilibrium
(operating point) in terms of the new variables is the origin (0,0, 0).



Using equations (2)-(3) and the definition of A\ we can write
T, = —K Q2 + Ky Q,, (6)

where K, K5 are constants.
In order to compute the control law (7}) and prove the stability of the closed-loop

system, consider the Lyapunov function candidate,

1[/2J, - _ _ _ _
®= K J;Jg) K02+ Iy (2 — Q)+ 1,02 + J,02| . (7)
It is straightforward to verify that ® is a valid Lyapunov function candidate [7]. Now, we
compute
. Jr + J, ~ ~\2 = — J,+ J
b= -5, (255) @ -0 oz ]+ o ter (- K0
J, - _

We chose a control law of the form

Tg =mQ, + an, )]
where m and n are constants. Further, we set
Jg
n—2m= 1+j K. (10)

Substituting the inequalities —Q3 < % (Qﬁ + Q?) and Q,02 < % (Q? + Qg) in equa-
tion (8) we get the following relation,

b < —aQ? - 602 —c (0, —Q,)°, (11)
where,
J, 4+ J. (K, 20, + Jr . -
— B, -~ T 24Ky - TGP 12
o = moin - B (k) - M e (12)
J,
b = 2m+Bs—2Jg (2K, + K1) (13)
¢ = B, (%) (14)

From the above equations we see ¢ > 0, and if we pick m large enough we also have
a,b > 0 for some |QT‘ < A, where A is some constant. Thus,

<0 (15)

for all z := (6, Q,,€Yy) € By, where By is a ball of radius A in the space S x R2. This
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Figure 1: Closed-loop simulations for a variable-speed, fixed-pitch WECS

proves local asymptotic stability of the closed-loop system with the region of attraction
given by B4. In fact, the control law also guarantees local exponential stability. Figure
2 demonstrates the application of the control law in a drive-train dynamics simulation.
Plots 1 and 2 of the figure show the convergence of the states of the system to the desired
operating point (the origin in both cases) for two different values of the control gain. The
larger m provides faster convergence. Plot 3 shows the result of a simulation where the
system is made to track a desired tip-speed ratio profile. Good performance is observed
in all simulations.

We note that the size of the region of attraction (determined by A) is a function of the
adjustable control gain m. Choosing a larger value of m will lead to a faster transient
and larger region of attraction. However, a large m may not be desirable if the wind has
dominant high frequency components, since this may lead to larger mechanical loads.

The control law given by equation (9) holds for all operating points of the wind turbine.
Furthermore, the Lyapunov-based control law is robust with respect to model uncertain-
ties. We also have a systematic procedure for determining the speed of convergence and
guaranteed region of attraction. The above theoretical results can be extended to varying
wind-speed situations. In the case of a variable-speed, variable-pitch WECS, similar con-

trol laws can be derived after incorporating additional dynamics due to pitch regulation.

3 Nonlinear Estimation

The unscented Kalman filter (UKF) can be used to calculate accurate state and parameter

estimates of the wind energy conversion system (WECS). The UKF removes some of the



shortcomings of the extended Kalman filter (EKF) (the most commonly used estimation
method for nonlinear systems till recently) by using the unscented transformation (UT).
Unlike the EKF, the UKF does not require any derivatives or Jacobians of either the state
equations or measurement equations. Instead of just propagating the state, the filter prop-
agates a set of sample, or sigma, points which are determined from the a priori mean and
covariance of the state. The sigma points undergo the unscented transformation. Then
the posterior mean and covariance of the state are determined from the transformed sigma
points.

Since UKF can accurately estimate the nonlinearities of a system, it is a very attractive
tool for WECS control implementation and parameter estimation. The aerodynamical
forcing driving the wind turbine has a highly nonlinear dependence on the blade pitch,
rotor speed and wind speed. Very often the wind speed measurement is not accurate or
absent. Moreover, while the wind speed distribution across the rotor blade determines the
actual aerodynamic forcing, wind measurements are made from only one or few positions
on the wind turbine system, and the drive-train dynamical model only considers an ef-
fective wind speed. Using a UKF estimation scheme will provide accurate estimates of
the effective wind speed. The UKF can also be used to estimate other hard to measure
signals such as rotor torque, as well as to estimate the parameters of the system. Having
an on-board parameter estimation capability will be particularly useful in mass-produced
wind turbine systems.

A summary of UKF equations can be found in [8]. The implementation of UKF follows
a systematic procedure as described in [8,9]. This procedure for parameter estimation is
summarized below:

Let w represent the vector of unknown parameters of the model of the wind energy
conversion system. The UKEF is initialized with the following parameter estimate and
covariance:

Wy = Ew], Py, = E[(w — ) (w — )7 (16)

Let L be the total number of states in the system. At any time-step k, 2L + 1 a priori
sigma points are determined:

Hi-1 = l Th-1 Tho1 + YV FPr-1 Zh-1 — vV o1 J ; (17)

where v = av/L + k, o and & are adjustable parameters of the filter, discussed further
after equation (25), and

by = (18)
P, = P,  +R_,. (19)

Wk



The next step in implementing UKF involves obtaining an update of the estimated

measurement vector d. This can be done as follows:
2L

di=) WD, e, (20)
i=0
where D; j;—1 represents the updated measurement estimate vector corresponding to the
ith sigma point:
Dyjp-1 = Glzk, Zgj—1] (21)

In equation (21), G represents the nonlinear mapping between the measured outputs and
the system parameters. I/Vi(m) and I/Vi(c) are weights given by

Wi - LAH (22)
WO — A i1_a2yg (23)
L+ A\
wim Wl@:m i=1... 2L (24)
and,
A=ca*(L+k)— L. (25)

In the above equations «, 3 and & are adjustable parameters of the filter. The parameter «
determines the spread of sigma points around the parameter estimate, and is usually set to
le — 3. The parameter x also influences scaling, and the parameter [ incorporates prior
knowledge of the distribution of x. For gaussian distributions, 3 is set to 2.

Sk-1 and D; y_, are used to compute the measurement covariance, Fy,q,, and the

cross-correlation covariance, Py, 4,

oL
Pyg, = > W Di g1 — del[Dijr — dil” + Ry (26)
i=0
2L )
Pua, = Z W Zikik—1 — Wkl [Dige—1 — di]”, (27)
i=0

where Rj, is the measurement covariance matrix. The Kalman gain matrix is
-1
Ky, = wkddekdk' (28)

Finally, the measurement update equations are used to determine the mean parameter
estimate, wy, and the covariance, P, :

A

Wy = W, + Kp(dy —d) (29)
Py, = P, — KyPyq K} . (30)



Estimation of WECS drive-train stiffness K
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Figure 2: Parameter estimation using UKF

Figure 2 presents a numerical example of estimating the stiffness K of the wind energy
conversion system model using the UKF. In this example the UKF is initialized with
a K estimate of 5 Nm/rad, while the actual K; = 0.2 Nm/rad. Generator speed (2,
measurements are used in the UKF to derive estimates of K. All other parameters are
considered to be known accurately. The parameter estimation is very robust with respect
to the initial estimate of K. In the simulation presented the initial estimation error was

150 %.

4 Conclusions

Nonlinear control and estimation methods have been applied to a wind energy conver-
sion system model. These methods can be implemented systematically and have proven
convergence properties. Their inherent robustness and convergence properties renders de-
velopment and integration of advanced control and estimation algorithms into small-scale

systems affordable.
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