

You Are a Rocket Scientist!

What we will do

- Design a rocket with a payload
- Figure out the cost
- Test your design!

How we will do it

- Calculate the mass of the payload
- Pick a rocket engine
- Calculate the mass of the rocket
- Calculate the cost of the rocket
- Test your rocket in a simulation
- Types of spacecraft
 - Manned
 - Scientific
 - Weather
 - Scientific

- Payload cost
 - Manned spacecraft: 1,000 kg/person and cost is \$100,000 x mass of the payload
 - Weather satellite: payload is 300 kg and the cost is \$20,000 x mass of the payload
 - Scientific satellite: payload is 500 kg and the cost is \$50,000 x mass of the payload
 - Direc TV satellite: payload is 1,000 kg and the cost is \$10,000 x mass of the payload
- Rocket engine cost
 - Hydrogen/Oxygen engine cost = \$10,000 x mass of the payload
 - Kerosene engine cost = \$2,000 x mass of the payload
 - Solid rocket engine = \$1,000 x mass of the payload
- Fuel cost
 - Hydrogen/Oxygen fuel cost = \$10 x mass of the fuel
 - Kerosene fuel cost = \$2 x mass of the fuel
 - Solid rocket fuel cost = \$1 x mass of the fuel

The Rocket Equation

• This is the equation you need to know to be a rocket scientist!

$$m_f = m_p (e^{\Delta V/u_e} - 1)$$

- e is a special number equal to 2.718281828459046...
- The ... means it has an infinite number of digits!
- e^x means take e to the xth power like $10^2 = 10x10 = 100$
- ue is the exhaust velocity depends on the rocket engine
- ΔV is the change in velocity to get you into orbit 10 km/sec!!!!!!

 $e^{\Delta V/u_e}$

Princeton**SATELLITE**

Chart for Calculating

An Example

- 2 Person Spacecraft
 - mass payload = 2 x 1,000 = 2,000 kg
 - cost of payload = 2,000 x \$100,000 = \$200,000,000
 - pick the hydrogen/oxygen engine
 - get the value for "e" from the chart 9.5
 - mass of the fuel = $2,000 \times (9.5 1) = 17,000 \text{ kg}$
 - cost of the engine = 2,000 x \$10,000 = \$20,000,000
 - cost of the fuel = 17,000 x \$10 = \$170,000
 - total vehicle cost = \$200,000,000 + \$20,000,000 + \$170,000 = \$220,170,000