
A Reconfigurable, Decentralized Framework for
Formation Flying Control

Prototype Design Document

Joseph B. Mueller
November 30, 2005

Princeton Satellite Systems, Inc.
33 Witherspoon Street
Princeton, New Jersey 08542

ii

Contents

1 Introduction 1

2 Requirements 3

3 System Overview 5

3.1 Interfaces .5

3.2 Software Architecture .6

3.3 Software Module Design .8

3.4 Running a Simulation .11

3.5 Initializating the DFF Software .14

3.5.1 Command Lists .17

4 Software Modules 19

4.1 Command Processing .21

4.2 Parameter Database .24

4.3 Relative Navigation .26

4.4 Coordinate Transformation .29

4.5 Team Management .31

4.6 Guidance Law .38

4.7 Control Law .49

4.8 Collision Monitoring .54

4.9 ISL Management .58

4.10 Delta-V Management .62

4.11 Attitude Management .65

iii

CONTENTS CONTENTS

A Data Structures 67

A.1 Command Data .67

A.2 Team Data .67

A.3 State Data .68

A.4 Geometry Data .68

A.5 Eccentric Geometry Data .68

A.6 Window Data .69

A.7 Planning Parameters Data .69

A.8 Team Goals Data .69

A.9 Eccentric Team Goals Data .70

A.10 Cost Estimate Data .70

A.11 Constraints Data .70

A.12 Burn Data .71

A.13 Maneuver Data .71

A.14 Delta-V Command Data .71

A.15 Orientation Data .71

A.16 ISL Message Data .72

B Flowcharts 73

iv

CHAPTER 1. Introduction

The software described in this document is being developed in support of a Phase II SBIR contract with NASA
Goddard Space Flight Center. The title of the project is “A Reconfigurable, Decentralized Framework for Formation
Flying Control”. The objective of this project is to develop software that will support autonomous guidance and control
operations for a fleet of close-orbiting spacecraft in a wide range of orbits.

As with all SBIR projects, the work must possess a significant innovation. The innovative nature of this design is that
it provides decentralized guidance and control for a spacecraft cluster that can be dynamically organized as a multiple-
team hierarchy. Spacecraft can be grouped into teams of manageable size, and teams are connected in a hierarchical
fashion so that control of the entire formation is maintained. This provides a flexible approach to implementing
decentralized control. There are two main advantages to this approach. First, it is capable of supporting large clusters
because the satellites can be divided into appropriately sized teams. Second, the team organization, along with the
number of spacecraft in each team, can be changed over time. This will allow spacecraft to be added to or removed
from the cluster, increasing the mission flexibility.

The software package is referred to as as the “Decentralized Formation Flying” system, or the DFF system for short.
The complete DFF system is distributed uniformly across the fleet, such that each spacecraft is running the same
software. To function properly, each spacecraft must have the ability to communicate with all other spacecraft by
sending and receiving data over an inter-satellite link (ISL). In addition, the DFF system requires several interfaces
with spacecraft subsystems, including other software modules and hardware components. Generic interfaces will be
included with the DFF system; they will be implemented as interface plugins, isolated from the core DFF software.
Each interface plugin will require modification to provide an actual interface with specific subsystems.

This document describes the prototype DFF system that has been developed in MATLAB . The development of the
prototype design carries with it two objectives. First, it aims to establish feasibility. This has been accomplished in
Phase I. Second, the prototype is meant to serve as a blueprint for subsequent development of the real-time software.
In order to accomplish this objective, it is necessary to provide sufficient detail about how the prototype system
works. However, in the course of this description, it is important to avoid the imposition of unnecessary or unrealistic
constraints on the real-time software. Therefore, this document includes a detailed description of the DFF functionality
that is platform-independent.

The MATLAB -based prototype is implemented in a manner that emulates the MANTA environment to the greatest
extent possible. However, because MATLAB is single-threaded, it is inherently limited in its ability to emulate a multi-
threaded system. The system is divided into discrete modules, with each module having its own block of persistent
memory, and message-passing is imitated with a function call to the destination or source module. The prototype was
designed in this fashion to aid in the process of transitioning the design from MATLAB to C++/MANTA. However,

1

CHAPTER 1. INTRODUCTION

it is not assumed that the MANTA-based design will necessarily match the MATLAB based design. Development in
MANTA should be carried out with the objectives of producing efficient, fault-tolerant software that captures all of
the functionality of the prototype.

Chapter 2 outlines the requirements for the DFF system. The requirements serve as the motivation for the prototype
design. Chapter 3 provides an overview of the system, and how it has been implemented in MATLAB . The details of
each software module are then provided in Chapter 4.

2

CHAPTER 2. Requirements

This section outlines the requirements of the DFF system.

The following quote is taken from the original 2002 NASA SBIR solicitation:

Novel approaches to autonomous control of distributed spacecraft and the man-agement of large fleets of
heterogeneous and/or homogeneous assets. Submissions should focus on one or several of the following
technologies and system-level concepts:

• Formation self-organization

• Reconfigurable control laws

• Robust and fault-tolerant control laws

• Algorithms for autonomous formation reconfiguration

• Nonlinear, robust estimation algorithms for relative navigation

• Integrated, multi-spacecraft formation guidance and control

• On-board, multi-spacecraft, closed-loop responsiveness to sensed events

• Low-cost approaches for formation navigation and control exploiting low-cost and existing
technologies such as GPS Optimal (e.g., minimum fuel, minimum time) approaches for forma-
tion maintenance and maneuvering

• Unique concepts for dealing with relevant perturbations and disturbances such as J2, solar radiation
pressure, etc.

• New modeling techniques to support the technologies and concepts listed above

The items shown in bold are those specifically addressed by the DFF system. These represent the high-level require-
ments.

The high-level requirements for the DFF system may be summarized as follows:

Req. #1 Provide formation guidance and control capabilities to a multi-spacecraft cluster

Req. #2 Enable autonomous reconfiguration of the formation geometry

Req. #3 Enable autonomous initialization and organization of formations

3

CHAPTER 2. REQUIREMENTS

Req. #4 Enable run-time modifications to be made to the software

Req. #5 Provide a dynamic and flexible command and telemetry interface

Req. #6 Be applicable to a wide range of formation flying missions

Requirement #6 is desirable from a commercialization standpoint, as it increases the potential market size for the
software. In particular, the software should support both circular and eccentric orbits, and be capable of handling a
variable number of spacecraft in the cluster. In order to provide guidance and control for both small and large clusters,
a decentralized approach is applied within a multiple-team framework. This represents one of the key innovations in
the project.

The combined purpose of Requirements #4 and #5 is to ensure that the system is flexible so that it can be adapted
over time. The run-time modifications include the ability to upgrade and add to the functionality of the software.
This requires a flexible command and telemetry interface, since the set of commands and telemetry will change as the
software is modified.

The ability to perform run-time modifications will be supported by the MANTA software architecture. The DFF
system will be implemented in MANTA as a set of independent, interactive tasks. Additional functionality may be
added to the system at run-time by uploading new tasks.

Requirement #3 involves the ability to autonomously initialize and organize the cluster. This functionality enables a
cluster of close-orbiting spacecraft to cooperatively form a multiple-team framework and collectively determine a safe
set of relative trajectories.

Requirement #2 states that the software must be capable of autonomously reconfiguring the formation geometry. This
refers to cases where the desired geometry of the cluster is specified in terms of high-level objectives, and the DFF
system is responsible for defining and achieving a specific set of relative trajectories to meet those objectives.

Requirement #1 involves the core functionality of the DFF system. The software shall be capable of defining the
desired relative trajectory of all spacecraft in the cluster (guidance), and be capable of planning and implementing
maneuvers to achieve those trajectories (control).

The system has been designed to meet all of the above requirements.

4

CHAPTER 3. System Overview

This section provides an overview of the DFF prototype design. The required interfaces are summarized first. The
basic architecture of the DFF software is then presented, followed by a description of the general software module
design. Next, a discussion of the simulation procedure is provided, and finally the details of the initialization method
are described.

3.1 Interfaces

The DFF software is designed to provide three basic functions:

• Team Management

• Formation Guidance and Control

• Collision Avoidance

In order to provide these functions, the software must interface with with other subsystems and software packages on
the spacecraft. The list includes:

• Ground Communication System– Enables commands to be received from the ground station, and telemetry
to be sent to the ground station.

• Relative Navigation System– Provides an estimate of the absolute and relative state (position and velocity) of
the local spacecraft in the cluster.

• Inter-Spacecraft Link (ISL) – Enables commands and data to be sent between spacecraft.

• Thruster Subsystem– One or more thrusters to enable orbital maneuvering.

• Attitude Control System (ADCS) – Controls the orientation of the spacecraft. Enables a target attitude to be
reached, so that the thruster(s) may be oriented in the proper direction.

These interfaces are illustrated in Figure 3-1 on the following page.

5

3.2. SOFTWARE ARCHITECTURE CHAPTER 3. SYSTEM OVERVIEW

Figure 3-1 . DFF Interfaces

T e a m M a n a g e m e n tG u i d a n c e & C o n t r o lC o l l i s i o n A v o i d a n c e

In the real DFF system, the interface to each subsystem will be implemented with a corresponding Interface Plugin
module. These modules will be designed to handle the specific interface requirements associated with the specific
hardware and software components. In order to support testing of the DFF system, a complete set of interface modules
will be developed. The details are summarized below:

• Ground Comm Interface Plugin – At a minimum, this will read a pre-defined set of commands from a file, and
supply them to the Command Processing module at specified times during the simulation. If time permits, an
interface to the TelemetryCommander application will be developed. This will facilitate direct user-interaction
with the DFF system as it runs.

• Rel Nav Interface Plugin– A specific interface will be developed for the GEONS navigation software.

• ISL Interface Plugin – This will interface directly with the ISL model in DSim. Binary data will be supplied
to the ISL model on the local spacecraft. The model will limit the rate at which data is transmitted to respect
the expected bandwidth of the ISL hardware. It will “transmit” the data by making it available to the DSim
ISL model associated with the destination spacecraft(s). Transmission will only take place if the sending and
receiving spacecraft are within range and the antennaes are within the field of view.

• Thruster Interface Plugin – This will interface directly with the thruster model in DSim. The spacecraft may
have one or more thrusters, and one or more fuel tanks. Each thruster will have a nominal thrust capability, so
that the desired delta-v is achieved through pulse-width modulation. The interface plugin will simply command
the thruster to turn on or off at the specified times.

• ADCS Interface Plugin – This will interface directly with separate ADCS software modules that also run
within MANTA. These modules are considered support software, and are not included in the DFF design. The
ADCS modules were designed for previous contracts that involved attitude determination and control for a 3-
axis stabilized spacecraft. The ADCS modules will interface directly with DSim models of attitude sensors and
actuators.

In the prototype design, no interface plugins exist. The interface between the DFF modules and the external subsystems
is handled directly by each module. For example, the Delta-V Management module interfaces directly with the thruster
model. This was done for the sake of speed and simplicity in the prototype development phase. However, when the
inputs and outputs of the modules are described in Chapter 4, the interface plugins are included in the descriptions.
This is done so that the module descriptions provide a more accurate blueprint for how to develop the MANTA-based
system.

3.2 Software Architecture

6

CHAPTER 3. SYSTEM OVERVIEW 3.2. SOFTWARE ARCHITECTURE

The DFF prototype consists of 10 software modules. A diagram of the architecture is shown in Figure 3-2. The dashed
line surrounds the core DFF software. Each of the external software and hardware components require a separate
interface. These interfaces are specific to the spacecraft design and are therefore implemented as interface plugins,
separate from the DFF system. The arrows connecting the DFF modules indicate the flow of messages within the
system. The Command Processing and Parameter Database modules send messages to all other modules.

Figure 3-2 . Architucture of DFF Prototype

D F F s o f t w a r e m o d u l eE x t e r n a l s u b � s y s t e mI n t e r f a c e P l u g i n . P r o v i d e s t h e i n t e r f a c e b e t w e e n D F F s o f t w a r e a n d o t h e r s o f t w a r e o r e x t e r n a l s u b s y s t e m s .

G u i d a n c eL a w
C o n t r o lL a w

T e a mM a n a g e m e n t
C o o r d i n a t eT r a n s f o r m D e l t a 2 VM a n a g e m e n t

C o l l i s i o nA v o i d a n c e

I S LM a n a g e m e n t

A t t i t u d eM a n a g e m e n t

C o m m a n dP r o c e s s o r P a r a m e t e rD a t a b a s e
I S L

T h r u s t e r s
A D C S

U p l i n k /D o w n l i n k

R e l a t i v eN a v i g a t i o n

The primary functions of each module are summarized below.

• Command Processing– Receives commands from the ground station and forwards them to the appropriate
module(s). Any commands that update the value of internal parameters are also sent to the Parameter Database.

• Parameter Database– Receives parameter updates from the Command Processing module. Serves as a central
repository for parameters that may be requested at any time by other modules. Is used to initialize all other
modules at startup.

• Coordinate Transformation – Transforms the state estimate from the Relative Navigation module into appro-
priate coordinate frames as required by the DFF algorithms.

• Team Management– Maintains the hierarchical team organization of the cluster. Provides autonomous team
formation and autonomous reference rollover capabilities.

• Guidance Law – Determines the desired relative trajectory of all spacecraft based upon the desired geometry
of the team or cluster.

7

3.3. SOFTWARE MODULE DESIGN CHAPTER 3. SYSTEM OVERVIEW

• Control Law – Plans impulsive maneuvers to achieve the desired relative trajectory.

• Collision Monitoring – Monitors the probability of a collision (over a given time window) with other spacecraft
in the cluster, and provides a preemptive collision avoidance capability.

• ISL Management– Interfaces with the ISL subsystem on the spacecraft. Enables internal DFF messages to be
sent to and received from other spacecraft.

• Delta-V Management– Interfaces with the thruster(s) subsystem on the spacecraft. Receives delta-v commands
from the Control Law and Collision Avoidance modules. Sends commands to fire thruster(s) at the appropriate
times to achieve the desired delta-v. Computes the required attitude that the spacecraft must have for each
thruster firing, if necessary.

• Attitude Management – Interfaces with the ADCS. Receives attitude commands from the Delta-V Manage-
ment module. Commands the ADCS to slew to the desired quaternion prior to the thruster firing.

The Relative Navigation block provides the navigation solution to the rest of the DFF software. In the prototype
design, this module simply obtains the state data from the simulation and provides it to the Coordinate Transformation
module. Random noise will be added according to the standard deviations specified in this module’s initialization
function. In the MANTA design, a specific interface to the GEONS software will be developed.

The ADCS software is implemented as two additional software modules:

• AttitudeManeuver.m

• AttitudeController.m

These modules are considered supporting software, and are not part of the DFF system.

The details of each module are provided in Chapter 4.

3.3 Software Module Design

The software modules are implemented in MATLAB in an object-oriented fashion. The intent is to emulate the MANTA
environment to the greatest extent possible. Each module is implemented as a single m-file. It has its own block of
persistent memory, so that member variables may be stored and modified as the system runs. In addition, each module
has member functions, that are visible only within the scope of the module function. Message-passing is imitated with
a function call to the destination or source module.

The structure of each module is based upon theDFFModuleTemplate.m file. The complete contents of this file are
shown in the code listing below. The function has three inputs –action , d, andk . Theaction is a string argument
that tells the module what to do. In general, the action either corresponds to a member function (such asUpdate or
Initialize) or the name of a message.

The second input,d, is used to pass data into the module. The type of data depends entirely on the action; some
actions do not have corresponding data, in which cased is empty. For example, when the module is called with the
’update’ action, the Julian date is passed in as the inputd. When the action corresponds to an incoming message,
such as’set teamData’ , the inputd would be a team data structure.

The third argument,k , identifies the spacecraft. In general, the spacecraft ID may be any positive integer. However, in
order to speed up and simplify the MATLAB implementation, the IDs for a simulation ofN spacecraft are restricted to
range from 1 toN . The reason for this restriction is based upon the manner in which the persistent memory is stored.

8

CHAPTER 3. SYSTEM OVERVIEW 3.3. SOFTWARE MODULE DESIGN

Listing 3.1 . DFFModuleTemplate.m DFFModuleTemplate

1 function t = DFFModuleTemplate(action, d, k)
2

3 %--
4 % Template for DFF software module . Describe the basic functionality here .
5 %--
6 % Form:
7 % t = DFFModuleTemplate (action , d, k)
8 %--
9 %

10 % ------
11 % Inputs
12 % ------
13 % action (1,:) Action to be performed
14 % d (1,1) Data associated with incoming messages
15 % k (1,1) Spacecraft ID
16 %
17 % -------
18 % Outputs
19 % -------
20 % t (1,1) Output for any accessors that you may add
21 %
22 %--
23

24 %--
25 % Copyright (c) 2005 Princeton Satellite Systems , Inc .
26 % All rights reserved .
27 %--
28

29 persistent s % This contains the memory for this function
30

31 if (nargin < 3)
32 k = 1;
33 if (nargin < 2)
34 d = [];
35 end
36 end
37

38 switch action
39

40 case ’initialize’
41 s{k} = Initialize(k);
42

43 % Commands (some simple examples provided below)
44 %---------
45 case ’reset’
46 s{k} = Initialize(k);
47

48 case ’set updatePeriodMT’
49 s{k}.updatePeriod = d;
50

51 case ’command on’
52 s{k}.on = 1
53

54 case ’command off’
55 s{k}.on = 0;
56

57 case ’set data’
58 s{k}.data = d;
59

60 % Accessors for providing this module ’ s data to other modules
61 %--
62 case ’get updatePeriodMT’
63 t = s{k}.updatePeriod;
64

65 case ’get data’
66 t = s{k}.data;
67

68 % Processing
69 %-----------
70 case ’update’
71 if (d - s{k}.timeLastUpdate >= s{k}.updatePeriod/86400.0)
72 s{k} = Update(s{k}, d);
73 s{k}.timeLastUpdate = d;
74 end
75

76 % Test Cases
77 %-----------
78 case ’test’
79 DFFModuleTemplate(’initialize’,[],k);

9

3.3. SOFTWARE MODULE DESIGN CHAPTER 3. SYSTEM OVERVIEW

80 s{k} = Update(s{k}, JD2000);
81 t = DFFModuleTemplate(’get data’,[],k);
82 disp (t);
83

84 % This will only be called if you send a command or try to access
85 % an accessor that doesn ’ t exist
86 %--
87 otherwise
88 MessageQueue(’add’,[mfilename,’:SC’, num2str (k)],...
89 sprintf (’%s is not a valid action’,action)’,’error’);
90 t = s;
91 end
92

93 %--
94 % FSW Processing . All your algorithms go here . Add additional
95 % subfunctions or calls to other MATLAB functions as needed .
96 %--
97 function d = Update(d, jD)
98

99 if (d.on)
100 d.data = foo(d.data);
101 DFFOtherModule(’set data’, d.data, d.iD);
102 end
103

104 %--
105 % Member functions
106 %--
107

108 % foo
109 function a = foo(b)
110

111 %--
112 % Initialize the member variables .
113 %--
114 function d = Initialize(iD)
115

116 d.iD = iD;
117 d.updatePeriod = 10;
118 d.timeLastUpdate = -d.updatePeriod;
119

120 % flags
121 d.on = 0;
122

123 % adjustable parameters
124 d.data = DFFParameterDatabase(’get data’,[],iD);

DFFModuleTemplate

The persistent memory for the module is stored in the variables (see line 29). This variable is initialized to be a cell
array of similar data structures, where each cell corresponds to a different spacecraft. For example, if a cluster of 10
spacecraft are being controlled,s would be a cell of length 10. The fourth cell would correspond to the spacecraft
whose ID is 4.

Every module in the DFF system has the following actions in common:

• initialize

• update

• reset

• set updatePeriod##

• get updatePeriod##

The first two actions are initiated by the executive function,DFFControl . The latter three actions are messages that
may be sent from outside modules.

The “##” suffix in the last two messages is used to distinguish between different modules. In this case, the suffix is
“MT” for “ModuleTemplate”. A unique suffix is used for every module in the system.

10

CHAPTER 3. SYSTEM OVERVIEW 3.4. RUNNING A SIMULATION

The ’initialize’ action is shown on line 40. The result is to call theInitialize member function, which
begins on line 114. The purpose of this function is to initialize all member variables. Every module has at least the
first three member variables shown:iD , updatePeriod , andtimeLastUpdate . As an example, two additional
member variables are initialized here: a flag (or boolean) calledon and an adjustable parameter calleddata . Notice
that the value fordata is obtained from the Parameter Database module. The Parameter Database is initialized
before any other module. It contains a database of parameters that are required by the other modules. This process is
explained further in Section 3.5 on page 14.

The ’update’ action appears on line 70. If the elapsed time since the last update surpasses the update period, then
theUpdate member function is called. TheUpdate function begins on line 97. This is where the main functionality
of the module occurs. Note that The Julian date is passed in directly to this function. This is done in every module
to increase the speed of the simulation. The alternative is for each module to obtain the Julian date from the software
clock, via the functionFSWClock.m , which is more akin to how the current time will be obtained in MANTA.

The ’reset’ action appears on line 45. This causes the module to re-initialize. Clearly, it has the same effect as the
’initialize’ action. The name “reset” is chosen simply for clarity, to distinguish this as a command that may be
issued at run-time.

In general, a module can do two things: 1) modify member variables, and 2) send messages to other modules. These
things may be done either during an update, or upon the receipt of a message. The resulting data structure is returned
at the end of the update and is then stored in the cell arrays . It is important to note that changes to the data structure
are not stored untilafter theUpdate function returns – a consequence of the single-threaded nature of MATLAB .

Five of the actions shown in this template correspond to commands that may be sent from the ground or perhaps
another module (lines 43-58). Two actions are accessors (lines 60-66). These are messages sent from some other
module that is requesting data. In addition, a’test’ action is included on line 78. This is meant to be used for
debugging and verification purposes.

The’command on’ action appears on line 51. It has the effect of setting the member variableon to 1. Alternatively,
the variable is set to 0 with a’command off’ message. These messages represent commands that may be sent from
the ground (via the Command Processing module), or from another module. A different type of command message
’set data’ , which appears on line 57. As opposed the first two command messages, this one has corresponding
data. The messages called’get updatePeriodMT’ and’get data’ are both accessors. For example, another
module may call theDFFTemplateModule function with the action’get data’ to obtain the value of the
variabledata .

3.4 Running a Simulation

The DFF software may be run in a multi-spacecraft simulation by calling theDFFSimulation function. The help
header for this function is shown below.

Listing 3.2 . DFFSimulation.m DFFSimulation

%---
% Initialize and run a multiple spacecraft simulation with the DFF software .
%---
% Form:
% d = DFFSimulation (sim)
%---
%
% ------
% Inputs
% ------
% sim (.) Simulation data structure , containing simulation
% parameters and spacecraft data
% recordTargetState (1) Record the target state or not ? (optional)
% showTeamOrg (1) Show the team organization or not ? (optional)
% showMsgQ (1) Show the Message Queue or not ? (optional)
%

11

3.4. RUNNING A SIMULATION CHAPTER 3. SYSTEM OVERVIEW

% -------
% Outputs
% -------
% d (.) Output data structure , containing time histories of
% all states and controls
%
%---

DFFSimulation

The details of the simulation are governed by the contents of the simulation data structure. The elements of this data
structure are described in Table 3-1.

Table 3-1 . Simulation Data Structure

Field Data Description
nSC int Number of spacecraft
nPMax int Defines how frequently to store data for plotting. The state

data is stored everynPMax time-steps during the simulation.
ideal int Indicates whether the simulation is ideal (1) or not (0). If

ideal, the measurements and actuation are perfect.
jDEpoch double Julian date of the simulation start time.
duration double Duration in seconds.
dT double Integration time-step in seconds.
prop struct Contains the propagation settings. Described in Table 3-2.
commandList char [] Name of the command list file. This is an m-file that con-

tains the complete set of time-tagged commands that are to
be sent to the DFF system. Command lists are described in
Section 3.5.1 on page 17.

controlDataFile char [] Name of mat-file that contains initialization data for the sup-
porting ADCS software modules. The DFF modules do not
use data from this file to initialize.

spacecraftDataFile char [] Name of the m-file that contains spacecraft-related data. This
is described further in Section 3.5 on page 14.

scNames char [][] Names of the individual spacecraft. Used when the simula-
tion results are loaded into the PlottingTool.

state matrix [14,nSC] State data. One column per spacecraft. Each column has 14
rows. States include: ECI position (3) and velocity (3), ECI-
to-body quaternion (4), angular velocity (3), and fuel mass
(1).

stateName char [][] Name of each state. Used when the simulation results are
loaded into the PlottingTool.

stateUnit char [][] Units for each state. Used when the simulation results are
loaded into the PlottingTool.

Table 3-2 . Propagation Data Structure

Field Data Description
hiFidelity int Indicates whether to use a high-fidelity gravity model, or

to simply compute the acceleration according to the inverse
square law. The remaining fields of this data structure are
required only if this field is true.

gravityModel struct Contains the gravity model data.
numberOfTesseralHarmonics int The number of zonal harmonics to include.
numberOfZonalHarmonics int The number of zonal harmonics to include.
planetaryDisturbancesOn int Indicates whether to model planetary disturbances.

The simulation data structure may be generated manually at the command line, or by means of a simulation setup file.

12

CHAPTER 3. SYSTEM OVERVIEW 3.4. RUNNING A SIMULATION

Several setup files have already been written in support of various demos. Any one of these may be used as a template.
In order to run the autonomous team formation demo, you would type:

>> sim = AutoFormSimStruct;
>> d = DFFSimulation(sim);

The set of commands for this demo is generated with the fileAutoFormCommandList.m . Command lists are
discussed in Section 3.5.1 on page 17.

Within the simulation, the modules are initialized and updated using the executive function,DFFControl .

A small status window pops up once the simulation begins. It displays the simulation speed, the percent complete, and
an estimate of how much time remains. The buttons allow you to pause and resume the simulation, stop it and quit,
or stop it and plot the resulting data. In addition, you may elect to show or hide the Message Queue and the Team
Organization displays at any time. Hiding these windows allows the simulation to run faster. Example screenshots of
the Message Queue, status window, and Team Organization display are shown in Figure 3-3

Figure 3-3 . DFF Simulation Windows

The Message Queue is used as a means of logging the activities of the software. Messages are displayed as the software
runs to notify the user of any predefined actions or events of interest. Each message is generated with a single call to
theMessageQueue function; the syntax is similar to that shown in theotherwise case of the module template
(Listing 3.1 on page 9).

The Team Management display provides a graphic representation of the hierarchical team organization. This is partic-
ularly useful in scenarios where the team structure changes over time. As the simulation runs, the team data structure
is repeatedly obtained from the Team Management module on each spacecraft. The resulting array of team data
structures is then supplied to theShowTeams function, which creates the graphic depiction.

Once a simulation is complete, or once the “Stop and Plot” button is pushed, the raw simulation data is loaded into
the PlottingTool . The data set includes the mission elapsed time, the 14 states (as described in Table 3-1 on
the facing page), the applied force and torque, the reference ID, and (if therecordTgtState input was true), the
desired relative position and velocity in Hills-frame. A template is available for the DFF simulation data. Applying the

13

3.5. INITIALIZATING THE DFF SOFTWARE CHAPTER 3. SYSTEM OVERVIEW

template namedDFFPlotting.mat from the “Template” menu of the GUI will clean up the raw data and provide
a more meaningful set of data to work with. It will group single position and velocity elements into vectors, transform
inertial states into the relative frame, and derive other useful data, such as the distance to all other satellites, and the
position error magnitude. A screenshot of thePlottingTool is shown in Figure 3-4.

Figure 3-4 . PlottingTool with DFF Simulation Data

3.5 Initializating the DFF Software

The initialization procedure is an important element of the DFF design. One of the objectives with the software is to
enable re-initialization of individual modules at run-time. This feature will enable individual modules to be killed and
restarted at any time, without having to reboot the entire system. In addition, it will support the dynamic loading and
initialization of new modules as the original system continues to run. Another objective is to make the software as
generic as possible, so that it can be applied with minimal changes to a variety of formation flying missions.

Consider the block diagram shown in Figure 3-5 on the facing page. The Command Processing and Parameter
Database modules are the focus of this diagram. The point is to illustrate the flow of data through these modules
and how they are initialized.

Every module in the DFF system requires a particular set of data for it to run. In general, the different types of data
may be distinguished as follows:

• Fixed

• Variable

– Parameters uploaded from the ground

– Telemetry data obtained from subsystems

Examples of fixed data would include the spacecraft dry mass and inertia, the direction of fixed solar panels in the
body frame, and the bandwidth of the ISL. Fixed data consists primarily of hardware measures that cannot change over
the course of the mission. Variable data includes parameters that may be adjusted over time via ground commands,
and time-varying data obtained from the spacecraft’s subsystems. Examples of adjustable parameters would include
the position error deadband and the geometric goals. The mass of fuel remaining in each fuel tank is an example

14

CHAPTER 3. SYSTEM OVERVIEW 3.5. INITIALIZATING THE DFF SOFTWARE

Figure 3-5 . DFF Block Diagram with Initialization Scripts

G u i d a n c eL a wC o n t r o lL a wC o l l i s i o nA v o i d a n c e

T e a mM a n a g e m e n tC o o r d i n a t eT r a n s f o r mG E O N SI n t e r f a c e
D e l t a � VM a n a g e m e n t

C o l l i s i o nM o n i t o r

I S LM a n a g e m e n t
A t t i t u d eM a n a g e m e n t

G r o u n dS t a t i o n

P a r a m e t e rD a t a b a s e
C o m m a n dP r o c e s s o r

S u b 8 S y s t e m sS u b 8 S y s t e m sS u b 8 S y s t e m s

/ /
A d j u s t a b l eP a r a m e t e r s

T e l m e t r y

P a r a m e t e rU p l o a dD i c t i o n a r y

S u b s y s t e mT e l e m e t r yD i c t i o n a r y

S p a c e c r a f tP a r a m e t e r s
I S L

T h r u s t e r s
A D C S

R e l N a v
F i x e dP a r a m e t e r s

S o f t w a r eC o m m a n dD i c t i o n a r yC o m m a n d s

of required subsystem telemetry. The following three initialization scripts are used to initialize the DFF system with
these three different types of data.

• “Spacecraft Parameters”

• “Parameter Upload Dictionary”

• “Subsystem Telemetry Dictionary”

Figure 3-5 shows that these three scripts are supplied to the Parameter Database module. This module is initialized
first. All other modules in the DFF system initialize themselves with data obtained from Parameter Database. In this
manner, when a module is re-initialized at run-time, it uses the most current data from the Parameter Database.

A fourth initialization script that appears in the diagram is the “Software Command Dictionary” file, which is used
by the Command Processing module. The job of this module is to receive commands from the ground station (via
the comm system) and forward the commands in the form of messages to the appropriate modules. Two types of
commands may be sent, according to the following naming conventions:

• set#

• command#

where the # represents the remainder of the command name string. Theset messages include data, whereas the
commandmessages do not. In the case ofsetmessages, the # corresponds to a specific parameter, and it must be a
single word without spaces. The following capitalization format is used for the parameters:

firstSecondLast

The Command Processing module checks the name of each command, and then prepares and sends a message to all
modules who have registered for that command. Allsetmessages are also forwarded to the Parameter Database so that

15

3.5. INITIALIZATING THE DFF SOFTWARE CHAPTER 3. SYSTEM OVERVIEW

the included data may be stored. The Command Processing module is initialized with two files: a “Software Command
Dictionary” for the data-lesscommandmessages, and a “Parameter Upload Dictionary” for thesetmessages. Each
file contains a table of commands with the following columns:

• Command Name

• Destination Module

• Default Data

• Description

The description field is included for clarity purposes only; it is not used by the software. The default data column is
blank in the “Software Command Dictionary”, as its messages contain no data. In the “Parameter Upload Dictionary”,
the entries in this column are string representations of default data for each command. Also, commands may have
more than one destination module, in which case multiple entries (multiple rows in the table) are required.

The Parameter Database receives data from three sources: 1)setmessages forwarded from the Command Process-
ing module (as discussed above), 2) telemetry data obtained from the subsystems, and 3) fixed spacecraft data. As
previously mentioned, the module is therefore initialized with the following three files:

• “Parameter Upload Dictionary”

• “Subsystem Telemetry Dictionary”

• “Spacecraft Parameters”

The “Parameter Upload Dictionary” contains the list of allsetcommands. Embedded in the name of each command is
the name of corresponding adjustable parameter. The “Subsystem Telemetry Dictionary” has the following columns:

• Data Name

• Subsystem Name

• Description

This information informs the Parameter Database as to what pieces of telemetry are to be obtained from which sub-
systems.

The “Spacecraft Parameters” file contains only two columns:

• Data Name

• Data Value

All three files are loaded into the Parameter Database at initialization. It uses the contents of the files to create a set
of member variables that are named the same as the data names listed in the files. Three sets of member variables
are generated: adjustable parameters, time-varying telemetry data, and fixed spacecraft parameters. The adjustable
parameters and fixed spacecraft parameters are initialized with the values provided in the initialization files. The
values for the telemetry data, however, are not included in the initialization file. These values are obtained directly
from the subsystems.

16

CHAPTER 3. SYSTEM OVERVIEW 3.5. INITIALIZATING THE DFF SOFTWARE

3.5.1 Command Lists

In the real-time implementation of the DFF software, commands would be composed and sent to the system intermit-
tently from a remote operator. This type of real-time interactive functionality will be supported in the MANTA-based
system. For the prototype, however, there is no need to manually send commands one-at-a-time. Rather, we wish to
compose predefined command lists that are designed to exercise specific features of the software.

As noted in Table 3-1 on page 12, a specific command list is loaded for each simulation. Several command list func-
tions have already been written in support of various demos. A basic template is provided inDefaultCommandList.m .
A portion of the template is given below.

Listing 3.3 . DefaultCommandList.m Command List

function cmd = DefaultCommandList

% help header omitted here for brevity

% Initialize Command Structure array
%-----------------------------------
cmd = Command_Structure(5);
k = 0;

% Fill - in information for each command
%-------------------------------------

k = k + 1;
cmd(k).timeTag = 1;
cmd(k).scID = 1:6;
cmd(k).module = ’DFFControlLaw’;
cmd(k).command = ’command control on’;
cmd(k).data = [];

Command List

The function returns an array of command data structures. The format for a command data structure is defined in
CommandStructure.m . The array is initialized first – in this case, a total of 5 commands are generated. In the
next block of code, the fields in the first element of the array are defined. ThetimeTag field specifies the mission
elapsed time at which the command is to be processed. ThescID field indicates which spacecraft the command is
sent to. themodule field indicates the destination module. Thecommandfield specifies the name of the command.
All commands must begin with eithersetor command. Finally, thedata field contains any data that may be included
with the command. In this case, the’command control on’ message is sent to the Control Law on spacecraft
ID’s 1 through 6, at 1 second into the simulation.

The command list function is called by the executiveDFFControl function during initialization. The commands are
first sorted chronologically, then each command is distributed to the appropriate destination spacecraft by storing it in
the corresponding elements of a cell array. This cell array of commands is then passed in to the Command Processing
module when it is initialized. It therefore begins the simulation with the complete set of ground commands. Each time
the module updates, it processes those commands whose time-tag is less than or equal to the current time, and then
removes those commands from memory.

In the real DFF system, new commands will be received as the system runs. The same type of time-tagged processing
is still necessary, though, because in many cases the ground station operator will want to send a batch of time-tagged
commands while the satellite is within view. An additional support module should be developed for automated testing
purposes. It would enable predefined sets of commands to be sent to the Command Processing module over time to
avoid having to always send the commands manually.

17

3.5. INITIALIZATING THE DFF SOFTWARE CHAPTER 3. SYSTEM OVERVIEW

18

CHAPTER 4. Software Modules

This section describes the software modules that compose the DFF prototype system.

Each section is organized into the following subsections:

• Scope– Summarizes the main purpose and overall functionality of the module.

• Messages– Lists all input and output messages. Messages are divided into the following categories:

– Input Messages– Incoming messages from other modules.

– Request Messages– Messages sent from another module requesting data.

– Output Messages– Outgong messages sent to other modules.

• Required Functions– Lists all functions that are called from within the module.

• Member Variables – Lists all member variables.

• Functionality – Describes the complete functionality of the module.

Note that although every module has a “get updatePeriod## ” request message, these messages are not used in
the prototype system. They are therefore not included in the list of request messages.

In addition, a subset of the modules must send messages to other spacecraft. The details of this process are described in
Section 4.9 on page 58. All inter-spacecraft messages are sent through the ISL Management module via the “transmit”
message. In the sections that follow, when an asterisk (*) is shown after the source or destination module, it indicates
an inter-spacecraft message. The message first sent to the ISL Management module on the source spacecraft, is
transmitted over the ISL, is then received at the ISL Management module on the destination spacecraft, and is finally
sent to the destination module.

The modules that require inter-spacecraft communication exhibit distributed functionality. Identical copies of the same
software operate on multiple processors, sharing information to coordinate their behavior. A series of flowcharts have
been developed for each of these modules in order to more clearly describe the sequence of events and the flow of data
in the distributed system. A complete set of more than 50 linked flowcharts is available in an OmniGraffle document
entitled “DFFSystem.graffle”. All of the diagrams are provided as an appendix to this document. A subset are included
within the main body of this document to illustrate the primary aspects of some modules’ functionality. The legend
for these flowcharts is shown in Figure 4-1 on the following page.

19

CHAPTER 4. SOFTWARE MODULES

Figure 4-1 . Legend for Module FlowchartsE n t e rF U N C T I O NN A M E

L o g i c c o n d i t i o n i n w o r d sh e r e . S h o w c o d e b e l o w .n o n M e m b e r V a r i a b l e = = 1B r i e f d e s c r i p t i o n o f w h a t i sb e i n g d o n e .C o m p u t e :v a r i a b l e N a m eF u n c t i o n N a m e
t r u e

e x i t

f a l s e

n a m e o f f u n c t i o n o ra c t i o n

s e t f l a g :m e m b e r V a r i a b l e = 0
B r i e f d e s c r i p t i o n o f w h a ti s b e i n g d o n e .

m e s s a g en a m e d a t a N a m es e n d t o M O D U L E N A M Eo n I D S E T / /
m e s s a g en a m es e n d t o M O D U L E N A M E

m e s s a g en a m eE n t e r E n t r y b l o c k . M a y c o r r e s p o n d t o a f u n c t i o n ,a n a c t i o n , o r t h e r e c e i p t o f a m e s s a g e .
A c t i o n b l o c k . P e r f o r m s o m e a c t i o n . T h i s c a ni n c l u d e s e n d i n g a m e s s a g e , c o m p u t i n g d a t a ,s t o r i n g d a t a , e t c .S e t b l o c k . T h i s i s a s u b s e t o f a n a c t i o n b l o c k .U s u a l l y i n v o l v e s s e t t i n g t h e v a l u e o f a m e m b e rv a r i a b l e . M e m b e r v a r i a b l e s a r e s h o w n i n i t a l i c s .

C o n d i t i o n b l o c k . E v a l u a t e s o m e c o n d i t i o n .I f t r u e , p r o c e e d o n e w a y . I f f a l s e , p r o c e e d t h eo t h e r w a y .

G o g t o b l o c k . G o t o a n e w f u n c t i o n o r a c t i o n .
T r a n s m i s s i o n b l o c k . S e n d a m e s s a g e t o o n e o rm o r e o t h e r s p a c e c r a f t . T h i s m e s s a g e i s s h o w n w i t hd a t a .M e s s a g e b l o c k . S e n d a m e s s a g e t o a n o t h e r m o d u l eo n t h e l o c a l s p a c e c r a f t . T h i s m e s s a g e i s s h o w n w i t hn o d a t a .E x i t b l o c k . E x i t t h e c u r r e n t s c o p e .

F u n c t i o n b l o c k . T h i s i s a n a c t i o n b l o c k t h a ti n v o l v e s a s p e c i f i c f u n c t i o n . T h e n a m e o f a n yp a r a m e t e r (s) b e i n g c o m p u t e d i s s h o w n a t t h eb o t t o m o f t h e b l o c k . T h e n a m e o f t h e f u n c t i o ni s s h o w n i n a s e p a r a t e b l o c k u n d e r n e a t h .

E n t e ra c t i o n n a m e

Although the flowcharts explicitly describe the prototype system, they were written with the intent of describing the
system in a platform-independent fashion. Therefore, they should provide a useful blueprint from which to build the
real-time system in MANTA.

The description of theentry blockmakes reference to an “action”. This does not correspond to a particular function,
and has nothing to do with theaction input of each module. Rather, it simply corresponds to a piece of the module’s
code that is best represented with a separate flowchart.

20

CHAPTER 4. SOFTWARE MODULES 4.1. COMMAND PROCESSING

4.1 Command Processing

DFFCommandProcessing

Scope

The purpose of the Command Processing module is to receive commands that are sent from the ground station oper-
ator and forward them to the appropriate modules. Much of this functionality is inherently built-in to MANTA. For
example, each incoming command could simply be broadcast to all tasks, and it would be received by only those tasks
with an input of the same name.

Messages

This module is designed to handle a dynamic set of inputs and outputs. A predefined set of command messages is
defined in the “Software Command Dictionary” and “Parameter Upload Dictionary” initialization scripts. This file
lists the names of all command messages, as well as the modules to which the commands should be forwarded. Two
types of commands may be sent, according to the following naming conventions:

• set#

• command#

where the # represents the remainder of the command name string. Theset messages include data, whereas the
commandmessages do not. In the case ofsetmessages, the # corresponds to a specific parameter, and it must be a
single word without spaces. The following capitalization format is used for the parameters:firstSecondLast .

It is anticipated that, in the real-time system, much of the message-passing functionality in this module will be auto-
matically handled by the built-in features of MANTA.

The set of input messages forthismodule is summarized in Table 4-1. All other messages are routed to other modules,
and are therefore described in other sections of this chapter.

Table 4-1 . Input Messages

Message Name Data Source Module Description
resetCP - Ground Comm In-

terface Plugin
Causes the module to run the Initialization func-
tion.

set updatePeriodCP double Ground Comm In-
terface Plugin

Sets the update period (in seconds).

register double - Add the supplied message name and correspod-
ning module name to the list of outputs.

print double User Causes the module to run thePrintToFile
member function. Prints all outputs and destina-
tions to a tab-delimited file.

There are no request messages sent to the Command Processing module.

All of the setandcommandmessages that are received by this module are forwarded to other modules in the system
(with the exception ofset updatePeriodCP , which is meant only for this module). These are the only output
messages sent by the Command Processing module.

21

4.1. COMMAND PROCESSING CHAPTER 4. SOFTWARE MODULES

Required Functions

The functions required by the Command Processing module are listed in Table 4-2.

Table 4-2 . Required Functions

Function Name Description
strmatch Compare a string with a cell array of strings, find the index of the array that matches.
feval Evaluate a function given its name as a string.
ReceiveCommands Member function. Checks pre-loaded list of time-tagged commands, returns those com-

mands whose time-tag is past the mission elapsed time, and removes them from memory.
AddOutput Member function. Adds the specified message name and destination module to a cell array

of outputs and destinations.
PrintToFile Member function. Print all outputs and destinations to a tab-delimited file.

Member Variables

The member variables for the Command Processing module are listed in Table 4-3.

Table 4-3 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
commandList command[] Array of pre-definedcommanddata structures
newCommands command[] Array for newly receivedcommanddata structures
inputs char [][] Array of input names for commands to be forwarded (same

as output names)
outputs char [][] Array of output names (based on “Software Command Dic-

tionary”)
destinations char [][] Array of destination modules

Functionality

As previously discussed, the primary role of this module is to receive commands from the ground and forward them
to other modules. In this prototype design, commands are “sent” to the DFF system by initializing the Command
Processing module with a pre-defined command list. The module also has the capability to receive commands as it
runs. This would require either a user-interface for composing and sending commands during the simulation, or an
additional support module designed to send the commands at the appropriate times.

Each time the module updates, it calls theReceiveCommands function. This checks the pre-loaded list of time-
tagged commands, returns those commands whose time-tag is past the mission elapsed time, and then removes them
from memory. The output of this function, therefore, is an array ofcommanddata structures that are to be processed.
In the real-time system, these data structures would be sent, as they are received, from an interface plugin that interfaces
with the Ground Comm subsystem.

The code from theUpdate function is shown in Listing 4.1. The mission elapsed time,mET, is passed in instead of the
Julian date, for convenience. TheRecieveCommands function is called first. For each newly received command,
the name of the command is compared with the list of known outputs. If a match is found, the message is sent (with
any attached data) to all destination modules associated with this command. The MATLAB feval function is used to
call the module function given its name as a string.

Listing 4.1 . DFFCommandProcessing :: Update() DFFCommandProcessing :: Update()

function d = Update(d, mET)

22

CHAPTER 4. SOFTWARE MODULES 4.1. COMMAND PROCESSING

% Receive commands
%-----------------
[receivedCommands, d.commandList] = ReceiveCommands(d.newCommands, d.commandList, mET);
d.newCommands = {};

% cycle through all received commands
%------------------------------------
nC = length (receivedCommands);
for i=1:nC,

cmd = receivedCommands{i};

% find the output index
%----------------------
p = strmatch(lower (cmd.command), lower (d.outputs), ’exact’);

if (˜ isempty (p))
module = d.destinations{p}; % the list of destination modules
data = cmd.data; % the corresponding data
for j = 1: length (module)

feval (module{j}, cmd.command, data, d.iD); % route to all destination modules
MessageQueue(’add’,[’DFFCommandProcessing:SC’, num2str (d.iD)], ...

sprintf (’Commmand "%s" sent to %s’,cmd.command,module{j}));
end

else
MessageQueue(’add’,[’DFFCommandProcessing:SC’, num2str (d.iD)], ...

sprintf (’%s is an unknown command’,cmd.command),’error’);
end

end % end cycle through received commands

DFFCommandProcessing :: Update()

The member variablesd.outputs and d.destinations are generated in the initialization function, and are
based solely upon the “Software Command Dictionary” and “Parameter Upload Dictionary” files. All command
messages listed in the “Parameter Upload Dictionary” aresetcommands, and include data. Each of these commands
is also forwarded to the Parameter Database for storage.

23

4.2. PARAMETER DATABASE CHAPTER 4. SOFTWARE MODULES

4.2 Parameter Database

DFFParameterDatabase

Scope

The purpose of the module is to provide a central repository for various types of data that may be accessed by the other
modules. As discussed in Section 3.5 on page 14, the DFF system requires three different types of data:

• Fixed spacecraft parameters

• Parameters uploaded from the ground

• Telemetry data obtained from subsystems

This module loads three separate files to initialize these three differet sets of data. In this manner, the DFF software
may be applied to a variety of different spacecraft configurations and mission scenarios, without having to change the
software.

Messages

Like the Command Processing module, the Parameter Database is designed to handle a dynamic set of inputs and
outputs. It receives a copy of allsetcommands from the ground, and obtains specified telemetry data from specified
subsystems. The nominal list ofsetcommands is provided in the “Parameter Upload Dictionary” file, and the nominal
list of telemetry data and corresponding subsystems is provided in the “Telemetry Dictionary” file. Because the
messages are summarized in these initialization files, they are not repeated here.

The set of input messages specifically forthismodule is summarized in Table 4-4. In addition, allsetcommands sent

Table 4-4 . Input Messages

Message Name Data Source Module Description
resetPD - Command Process-

ing
Causes the module to run the Initialization func-
tion.

set updatePeriodPD double Command Process-
ing

Sets the update period (in seconds).

to the DFF system are copied to this module.

The Parameter Database module has a dynamic set of request messages. Any parameter that has been stored may be
obtained with aget parameterName message.

The output messages sent from the Parameter Database module are identical to thesetmessages that come in as inputs.

Required Functions

The functions required by the Parameter Database module are listed in Table 4-5 on the next page.

Member Variables

The nominal set of member variables for the Parameter Database module are listed in Table 4-6 on the facing page.

24

CHAPTER 4. SOFTWARE MODULES 4.2. PARAMETER DATABASE

Table 4-5 . Required Functions

Function Name Description
strmatch Compare a string with a cell array of strings, find the index of the array that

matches.
feval Evaluate a function given its name as a string.
eval Evaluate an expression provided as a string. Used to store member variables

given the parameter names.

Table 4-6 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
telemetryNames char [][] Array of telmetry parameter names
telemetrySubsystems char [][] Array of subsystem names corresponding to each telmetry

parameter

Functionality

The Parameter Database is different from all other modules in that it does not require an update function. It behaves
passively, only running when it receives a message from another module. Two different types of messages can be
received:

• set parameterName – Sent from the Command Processing module. Causes the data in the message to be
stored to the local copy ofparameterName .

• get parameterName – Sent from any other module. Causes the local copy ofparameterName to be
returned.

When this module is initialized, the complete set of parameters contained in the 3 initialization scripts are stored as
member variables. The name of each member variable matches the name supplied in thesetandgetmessages.

When asetmessage is received, the member variable corresponding to the specified parameter is updated with data
embedded in the message. If a member variable by this name does not yet exist, a new one is generated. In the
MANTA framework, this may be accomplished by dynamically adding new inputs & outputs to the module. Because
this involves dynamic memory allocation, some method of protection must be built-in to ensure the module does not
exceed its memory capacity.

When aget message is received, one of two responses may be taken. If the requested parameter is a “fixed” or
“uploadable” parameter, the currently stored copy is returned to the requesting module. However, if the requested
parameter is telemetry data, then the corresponding subsystem is polled for the specified data. This requires, of
course, that an interface to all such subsystems be maintained.

In the current implementation of the DFF prototype, the software requires telemetry data from only one subsystem:
propulsion. The fuel mass is required by the Guidance Law, Control Law, Team Management and Delta-V Manage-
ment modules. The Delta-V Management module also requires the tank pressure and thruster status.

In the real-time DFF system, it may be desirable for the Parameter Database to periodically poll all interfaced subsys-
tems for the complete set of telemetry. Alternatively, each interface plugin might be instructed to periodically supply
the telemetry to the Parameter Database at specified intervals. In either case, the telemetry data would be immediately
available in the Parameter Databasee when requested by another module.

25

4.3. RELATIVE NAVIGATION CHAPTER 4. SOFTWARE MODULES

4.3 Relative Navigation

DFFRelativeNavigation

Scope

The sole purpose of the Relative Navigation module is to provide the absolute and relative states to the Coordinate
Transformation module. The absolute state is defined as the position and velocity of the reference spacecraft in the
ECI frame. The relative state is defined as the relative position and velocity in a translated ECI frame, centered at the
reference spacecraft.

In the prototype design, this module simply obtains the true state data from the simulation and provides it to the
Coordinate Transformation module. Random noise is added according to the standard deviations specified in the
initialization function. In the MANTA design, this module will maintain an interface with the GEONS software.
GEONS will use GPS measurements with an extended Kalman filter to estimate the absolute and relative states.

Messages

The set of input messages that may be sent to the Relative Navigation module is summarized in Table 4-7.

Table 4-7 . Input Messages

Message Name Data Source Module Description
resetRN - Command Process-

ing
Causes the module to run the Initialization func-
tion.

set updatePeriodRN double Command Process-
ing

Sets the update period (in seconds).

set referenceID int Team ManagementSets the reference ID.

The set of request messages that may be sent to the Relative Navigation module is summarized in Table 4-8.

Table 4-8 . Request Messages

Message Name Source Module Description
get navigation data Coordinate Trans-

formation
Return the navigation data to the sender. Includes absolute
position and velocity of reference; relative position and ve-
locity of local spacecraft with respect to reference; and the
measurement time.

get reci Delta-V Manage-
ment, ADCS

Return my ECI position vector to the sender.

get veci Delta-V Manage-
ment, ADCS

Return my ECI velocity vector to the sender.

get referenceID - Return the reference ID to the sender.

The only message sent from the Relative Navigation module is “get x”. This is sent to the State Sensor to obtain
the ECI position and velocity of the specified spacecraft. The State Sensor is supporting software, not an actual DFF
module. It is used to temporarily store the true state information from the simulation, so that it may be obtained from
this and other modules in order to test the software.

Required Functions

The functions required by the Relative Navigation module are listed in Table 4-9 on the next page.

26

CHAPTER 4. SOFTWARE MODULES 4.3. RELATIVE NAVIGATION

Table 4-9 . Required Functions

Function Name Description
JD2SS1970 Convert Julian date time to “seconds since 1970”.

Member Variables

The member variables for the Relative Navigation module are listed in Table 4-10.

Table 4-10 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
rECI matrix [3,1] ECI position vector of myself (km)
vECI matrix [3,1] ECI velocity vector of myself (km/s)
rECIRef matrix [3,1] ECI position vector of reference (km)
vECIRef matrix [3,1] ECI velocity vector of reference (km/s)
rECIRel matrix [3,1] Relative ECI position vector (km)
vECIRel matrix [3,1] Relative ECI velocity vector (km/s)
time double Time associated with relative navigation measurement

(SS1970)
absPosNoise double Standard deviation of absolute position noise (km)
absVelNoise double Standard deviation of absolute velocity noise (km/s)
relPosNoise double Standard deviation of relative position noise (km)
relVelNoise double Standard deviation of relative velocity noise (km/s)

Functionality

The functionality of this module is best described by showing the MATLAB code from its update function. The first
inputd is the data structure that holds all member variables. This data structure is modified during the update and then
returned. The current Julian date,jD , is passed in as the second input. The code is shown in Listing 4.2 on the next
page.

The state data corresponding to this spacecraft is obtained first, and is stored in the member variablesd.rECI and
d.vECI . Next, the state data of the reference is obtained. The ID of the reference spacecraft is stored ind.refID ,
and is defined via the’set referenceID’ message that is sent from the Team Management module. Next, the
relative position and velocity is computed by subtracting the reference state from this spacecraft’s state. Random noise
is then added to all position and velocity vectors. Finally, the current time is stored ind.time , in units of “seconds
since 1970”. This is defined to be the time at which the measurements were taken.

The functionality of this module will be completely different in the real-time system. It will maintain an interface
with the GEONS software, obtain the state estimates from it periodically, and make these estimates available to other
software modules.

27

4.3. RELATIVE NAVIGATION CHAPTER 4. SOFTWARE MODULES

Listing 4.2 . Relative Navigation :: Update() Relative Navigation :: Update()

function d = Update(d, jD)

% obtain truth values for abs pos & vel of local satellite in ECI frame
x = StateSensor(’get x’,[],d.iD);
d.rECI = x(1:3);
d.vECI = x(4:6);

% obtain truth values for abs pos & vel of team reference in ECI frame
if (d.refID ˜= d.iD)

x = StateSensor(’get x’,[],d.refID);
d.rECIRef = x(1:3);
d.vECIRef = x(4:6);

else
d.rECIRef = d.rECI;
d.vECIRef = d.vECI;

end

% compute relative pos & vel in ECI frame
d.rECIRel = d.rECI - d.rECIRef;
d.vECIRel = d.vECI - d.vECIRef;

% add noise
if (d.iD ˜= d.refID)

d.rECI = d.rECI + d.absPosNoise * randn (3,1);
d.vECI = d.vECI + d.absVelNoise * randn (3,1);
d.rECIRef = d.rECIRef + d.absPosNoise * randn (3,1);
d.vECIRef = d.vECIRef + d.absVelNoise * randn (3,1);
d.rECIRel = d.rECIRel + d.relPosNoise * randn (3,1);
d.vECIRel = d.vECIRel + d.relVelNoise * randn (3,1);

end

% Time information
%-----------------
d.time = JD2SS1970(jD);

Relative Navigation :: Update()

28

CHAPTER 4. SOFTWARE MODULES 4.4. COORDINATE TRANSFORMATION

4.4 Coordinate Transformation

DFFCoordinateTransformation

Scope

The purpose of the Coordinate Transformation module is to transform the absolute and relative state estimates into
different coordinate frames required by other software modules.

Messages

The set of input messages that may be sent to the Coordinate Transformation module is summarized in Table 4-11.

Table 4-11 . Input Messages

Message Name Data Source Module Description
resetCT - Command Process-

ing
Causes the module to run the Initialization func-
tion.

set updatePeriodCT double Command Process-
ing

Sets the update period (in seconds).

The set of request messages that may be sent to the Coordinate Transformation module is summarized in Table 4-12.

Table 4-12 . Request Messages

Message
Name

Source Module Description

get state Guidance Law, Control Law, Delta-V Manage-
ment, Collision Monitor

Return the transformed state data to the sender. Includes the
orbital elements of the reference; orbital element differences
between local spacecraft and the reference; relative Hill’s-
frame state of local spacecraft with respect to the reference;
and the measurement time.

The set of messages sent from the Coordinate Transformation module to other modules is summarized in Table 4-13.

Table 4-13 . Output Messages

Message Name Data Destination ModuleDescription
get navigation data - Relative NavigationObtain the navigation data. Includes absolute po-

sition and velocity of reference; relative position
and velocity of local spacecraft with respect to ref-
erence; and the measurement time.

Required Functions

The functions required by the Coordinate Transformation module are listed in Table 4-14 on the next page.

29

4.4. COORDINATE TRANSFORMATION CHAPTER 4. SOFTWARE MODULES

Table 4-14 . Required Functions

Function Name Description
AbsRelECI2Hills Transforms absolute and relative ECI states into a relative Hill’s-frame state.
ECI2MeanElements Transforms osculating ECI position and velocity to mean orbital elements.
Alfriend2El Transforms standard orbital elements to the Alfriend set of elements.

Member Variables

The member variables for the Coordinate Transformation module are listed in Table 4-15.

Table 4-15 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
state state Data structure of absolute and relative state information

Functionality

The functionality of the Coordinate Transformation module is straightforward. Each time it updates, it carries out the
following steps:

1. Obtain the current estimate of the absolute and relative states from the Relative Navigation module.

2. Compute the relative position and velocity in Hill’s-frame coordinates, usingAbsRelECI2Hills .

3. Compute the mean orbital elements and orbital element differences, usingECI2MeanElements .

4. Compute the Alfriend orbital element set, usingEl2Alfriend .

5. Store the results in astatedata structure.

The state data is then supplied to other modules upon their request.

30

CHAPTER 4. SOFTWARE MODULES 4.5. TEAM MANAGEMENT

4.5 Team Management

DFFTeamManagement

Scope

The job of the Team Management module is to maintain a hierarchical team organization for the cluster. In particular,
this includes the following two functions:

1. Autonomous team formation

2. Autonomous reference rollover

Each team is composed of one reference spacecraft, which defines the origin of the relative frame, and one or more
relatives. Within a given team the desired trajectories of all relative satellites are defined with respect to the reference,
so that the reference has no desired trajectory within that team. In a hierarchy of teams, the reference of each team
doubles as a relative on a higher level team. The exception is the reference of the highest level team, which serves
as the cluster reference. An example illustration of a multiple-team hierarchy is shown in Figure 4-2. Teams are
grouped together by proximity, with the team name shown just to the left. The reference of each team is the located to
the left, slightly elevated above the other members, with an “X” behind it. Here, satellite #2 is the cluster reference.
Although the teams are given letterednameshere, in the DFF software they are distinguished by unique team IDs.

Figure 4-2 . Example Team Organization

2
3 4A

3
1B

4
5 6 10C

1
7D

7
9E

Level
1

Level
2

Level
3

Level
4

In general, a given satellite may be on an unlimited number of teams. However, it can be a relative ononly oneteam
at any instant. This rule, which is enforced by the Team Management module, prevents the possibility of assigning
conflicting geometric goals to a satellite on multiple teams.

In addition to the reference, each team also has one captain. The captain is responsible for carrying out a limited
number of tasks that require centralized coordination.

The “autonomous team formation” capability enables a cluster of spacecraft to self-initialize themselves into a multiple-
team hierarchy. This is done in a completely distributed and decentralized manner, with no single spacecraft having
any authority over another. The team organization can also be defined manually through commands from the ground.

Once a team organization is established, this module monitors the remaining fuel percentage on all team members.
This is done to promote equal fuel usage among team members over time. Since the team reference does not control
to a desired relative trajectory for that team, it expends less fuel than the relatives over time. We therefore wish to
change the identity of the reference once the difference in remaining fuel between the current reference and one or
more relatives becomes sufficiently large. This is termed an “autonomous reference rollover”.

31

4.5. TEAM MANAGEMENT CHAPTER 4. SOFTWARE MODULES

Messages

The set of input messages that may be sent to the Team Management module is summarized in Table 4-16.

Table 4-16 . Input Messages

Message Name Data Source Module Description
resetTM - Command Process-

ing
Force the module to run the Initializa-
tion function.

command auto ref roll on - Command Process-
ing

Enable autonomous reference rollover.

command auto ref roll off - Command Process-
ing

Disable autonomous reference rollover.

command auto cap roll on - Command Process-
ing

Enable autonomous captain rollover.

command auto cap roll off - Command Process-
ing

Disable autonomous captain rollover.

command acquisition on - Command Process-
ing

Enable autonomous team formation.

command acquisition off - Command Process-
ing

Disable autonomous team formation.

command reference rollover int [] Command Process-
ing, Team Manage-
ment*

Initiate a reference rollover. Make the
specified member ID the new reference
of the specified team ID.

command remove team member int [] Command Process-
ing, Team Manage-
ment*

Remove the specified member ID from
the specified team ID.

command add team member int [] Command Process-
ing, Team Manage-
ment*

Add the specified member ID to the
specified team ID.

command add team member team Command Process-
ing, Team Manage-
ment*

Add my ID to the supplied team data
structure, and store this new team in my
existing array of teams.

set updatePeriodTM double Command Process-
ing

Set the update period (in seconds).

set knownIDs int [] Command Process-
ing

Set the array of known satellite IDs.

set joinRequestPeriod double Command Process-
ing

Set the time period (in seconds) for
sending “request join team” messages.
Only used if autonomous acquisition is
enabled.

set maxMembers int Command Process-
ing

Set the maximum allowed number of
members on any team.

set maxTeams int Command Process-
ing

Set the maximum allowed number of
teams for any member.

set teamData team [] Command Process-
ing

Set the team data structure array. De-
fines the team organization.

set captainID int [] Command Process-
ing

Set the captain ID for the specified team
ID.

request join team int [] Team Manage-
ment*

Request from another satellite to join my
team.

notify team formation int Team Manage-
ment*

Notification from another satellite that
a new team has been formed. Data in-
cludes the captain ID of the new team.
All subsequent “request join team” mes-
sages are sent to this ID.

32

CHAPTER 4. SOFTWARE MODULES 4.5. TEAM MANAGEMENT

Table 4-16 . Input Messages, contd.

Message Name Data Source Module Description
team member added int [] Team Manage-

ment*
Notification from another team member
that a new member has been added.

update team info team [], int [] Team Manage-
ment*

Notification from another team member
that other teams have been modified.

inform memberGoals arr geometry Team Manage-
ment*

Notification of the geometric goals
from another satellite in support of
auonomous reference rollover in a
multiple-team setting.

The set of request messages that may be sent to the Team Management module is summarized in Table 4-17.

Table 4-17 . Request Messages

Message Name Source Module Description
get team data Guidance Law Return the team data structure array to the sender.
get local team data Guidance Law Return only the set of team data structures of which I am a

member.
get relative status Guidance Law Return a true/false flag indicating whether I am a relative.
get reference status Guidance Law,

Control Law
Return a true/false flag indicating whether I am a reference.

get captain status Guidance Law Return a true/false flag indicating whether I am a captain.
get captain id Guidance Law Return the ID of the captain for the team on which I am a

relative.
get captain id for team Guidance Law Return the ID of the captain for the specified team ID.
get relative ids for team Guidance Law, Col-

lision Monitor
Return the IDs of all relatives for the specified team ID.

get relative ids for reference Guidance Law,
Control Law

Return the IDs of all relatives for the specified reference ID.

get reference id for member Guidance Law Return the ID of the reference for the specified member ID.
get reference id for team Guidance Law Return the ID of the reference for the specified team ID.
get member ids for team Guidance Law, ISL

Management
Return the IDs of all members for the specified team ID.

get member ids for member Guidance Law Return the IDs of all members for the specified member ID.
get team ids for member Guidance Law, ISL

Management, Colli-
sion Monitor

Return the IDs of all teams which have the specified member
ID.

get team id for captain Guidance Law Return the ID of the team which has the specified captain ID.

The set of output messages sent from the Team Management module to other modules is summarized in Table 4-18.

Table 4-18 . Output Messages

Message Name Data Destination ModuleDescription
transmit isl message ISL Management Transmit the attached message over the ISL to an-

other spacecraft.
command reference rollover int [] Team Manage-

ment*
Initiate a reference rollover. Make the specified
member ID the new reference of the specified team
ID.

command remove team mem-
ber

int [] Team Manage-
ment*

Remove the specified member ID from the speci-
fied team ID.

command add team memberint [] Team Manage-
ment*

Add the specified member ID to the specified team
ID.

33

4.5. TEAM MANAGEMENT CHAPTER 4. SOFTWARE MODULES

Table 4-18 . Output Messages, contd.

Message Name Data Destination ModuleDescription
command add team memberteam Team Manage-

ment*
Add my ID to the supplied team data structure, and
store this new team in my existing array of teams.

request join team int [] Team Manage-
ment*

Request from another satellite to join my team.

notify team formation int Team Manage-
ment*

Notification from another satellite that a new team
has been formed. Data includes the captain ID of
the new team. All subsequent “request join team”
messages are sent to this ID.

team member added int [] Team Manage-
ment*

Notification from another team member that a new
member has been added.

update team info team [], int [] Team Manage-
ment*

Notification from another team member that other
teams have been modified.

request memberGoals arr int Guidance Law* Request the geometric goals from the Guidance
Law on the previous reference. Used in support of
auonomous reference rollover in a multiple-team
setting.

get memberGoals - Guidance Law Obtain the geometric goals from the Guidance
Law.

update memberGoals for new
team

geometry Guidance Law Instruct the Guidance Law to update its geomet-
ric goals in response to an autonomous reference
rollover.

reference change int [] Guidance Law Notify the Guidance Law that the team reference
has changed.

clear memberGoals - Guidance Law Clear the geometric goals.
notify joined team int Guidance Law Notify the Guidance Law that this satellite has

joined a team.
clear goals - Control Law Clear the geometric goals.
pause - Control Law Command the Control Law to pause. A “resume”

command will be sent later.
resume - Control Law Command the Control Law to resume.
notify team member added int [] Control Law Notify the Control Law that a team member has

been added.
get fuelMass int [] Parameter DatabaseObtain the remaining fuel mass of all team mem-

bers.
set referenceID int Relative NavigationInstruct the Relative Navigation module of the new

reference ID.

Required Functions

The functions required by the Team Management module are listed in Table 4-19.

Table 4-19 . Required Functions

Function Name Description
iscell ISCELL(C) returns 1 if C is a cell array and 0 otherwise.
isfield ISFIELD(S,’name’) returns 1 if ’name’ is a field in the structure array S and 0

otherwise.
isstruct ISSTRUCT(S) returns 1 if S is a structure and 0 otherwise.
intersect INTERSECT(A,B) when A and B are vectors returns the values common to both

A and B.
setdiff SETDIFF(A,B) when A and B are vectors returns the values in A that are not in

B.

34

CHAPTER 4. SOFTWARE MODULES 4.5. TEAM MANAGEMENT

Table 4-19 . Required Functions, contd.

Function Name Description
unique UNIQUE(A) for the array A returns the same values as in A but with no repeti-

tions.
ISLMessage Structure Initialize an ISL message data structure.
Team Structure Initialize a team data structure.
FSWClock Access the flight software clock to obtain the current time.
JD2SS1970 Convert Julian date to seconds since 1970.
TeamLevels Assign a hierarchical level to each team in the array.
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.
CaptainStatus Member function. Determine whether the specified member ID is a captain.
ReferenceStatus Member function. Determine whether the specified member ID is a reference.
RelativeStatus Member function. Determine whether the specified member ID is a relative.
CaptainIDForMember Member function. Find the captain ID for the specified member ID.
CaptainIDForTeam Member function. Find the captain ID for the specified team ID.
RelativeIDsForTeam Member function. Find the IDs of all relatives on the specified team ID.
RelativeIDsForReference Member function. Find the IDs of all relatives that have the specified reference

ID.
ReferenceIDForMember Member function. Find the reference ID for the specified member ID.
ReferenceIDForTeam Member function. Find the reference ID for the specified team ID.
MemberIDsForTeam Member function. Find the IDs of all members on the specified team ID.
MemberIDsForMember Member function. Find the IDs of all members that are on the same team as the

specified member ID.
ExtendedMemberIDsForMember Member function. Find the IDs of all members that are in the same hierarchy as

the specified member ID.
TeamIDsForMember Member function. Find the IDs of all teams that the specified member is on.
NumberOfTeamsForMember Member function. Find the number of teams that the specified member is on.
TeamIDForRelative Member function. Find the ID of the team which has the specified member ID as

a relative.
TeamIDForCaptain Member function. Find the ID of the team which has the specified captain ID.
TeamIndex Member function. Find the index of the specified team ID.
UniqueTeamID Member function. Generate a unique team ID.
SetTeamData Member function. Update the team data structure array and implement all re-

quired functionality associated with the changes.
CreateNewTeam Member function. Create and add a new team to the team data structure array

and implement all required functionality associated with the creation of the new
team.

SendTeamUpdateNotification Member function. Notify other teams of changes to this team.
ComputeJoinRequestTime Member function. Compute the next time to send a “request join team” message,

and the ID to send to.
RemoveTeamMember Member function. Remove the specified member from the specified team.

Many of the member functions directly support the retrieval of specific team-related information for a corresponding
request message. For example, the member functionReferenceIDForTeam is called when a “get reference
id for team ” message is received.

Member Variables

The member variables for the Team Management module are listed in Table 4-20 on the following page.

35

4.5. TEAM MANAGEMENT CHAPTER 4. SOFTWARE MODULES

Table 4-20 . Member Variables, contd.

Variable Name Data Description

Table 4-20 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
knownIDs int []
maxTeams int

maxMembers int

team team

amCaptain int Flag indicating whether I am a captain or not
amReference int Flag indicating whether I am a reference or not
amRelative int Flag indicating whether I am a relative or not
autoRefRollOn int Flag indicating whether autonomous reference rollover is en-

abled
autoCapRollOn int Flag indicating whether autonomous captain rollover is en-

abled
rolloverRFPDiff double Minimum allowable difference in remaining fuel percentage
timeLastRefRollReq double Time at which the module sent the last reference rollover

request (SS1970)
rolloverReqWaitTime double Amount of time to wait for a rollover request to take effect

before requesting again (sec)
awaitingGoalsForAutoRefRollover int Flag indicating whether I am awaiting goals for an au-

tonomous reference rollover
previousReferenceGoals geometry Previous geometric goals of the current reference
initialFuelMass double Initial mass of fuel in all tanks (kg)
acquisitionOn int Flag indicating whether autonomous acquisition is enabled
joinRequestPeriod double Time period for sending “request join team” messages (sec)
timeLastRequest double Time at which the last “request join team” message was sent
notifyTeamFormationRecd int Flag indicating whether I have been notified of a new team

formation
newTeamCaptainID int Spacecraft ID of the newly formed team
addingMember int Flag indicating whether I am in the process of adding a new

team member
addingMemberID int Spacecraft ID of team member being added
outgoing isl message [] Array of messages that are to be sent to the ISL Management

module at the next update

Functionality

As discussed earlier, the Team Management module provides two main functions: autonomous team formation, and
autonomous reference rollover. These functions are initiated in theUpdate function. In addition, the module also
provides a variety of team-related information to other modules, as shown in Table 4-17 on page 33.

Each request message asks for some piece of data that is directly obtained from the team data structure. Therefore,
each message has a corresponding member function that is used to compute the requested data. Each of these member
functions has two inputs. One input is the team data structure. The other input is either the data supplied with the
request message (if any), or the ID of the local spacecraft. For example, the request message “get relative ids
for reference ” is sent with the reference ID as data. TheRelativeIDsForReference function is called
with the team data structure and the supplied reference ID to compute the array of relative IDs. The code for this
function is shown below.

36

CHAPTER 4. SOFTWARE MODULES 4.5. TEAM MANAGEMENT

Listing 4.3 . RelativeIDsForReference Team Management :: RelativeIDsForReference()

function [iDs,k] = RelativeIDsForReference(refID, teams)
iDs = []; % default answer is empty , in case the supplied ID is not a reference for

any listed teams
k = [];
for i=1: length (teams) % cycle through all teams that this s/ c is a member of

if (teams(i).refID == refID) % if the supplied s/ c ID is a reference for the ith team ...
iDs = [iDs, setdiff(teams(i).memID,teams(i).refID)]; % tack on the relative IDs for this team
k = [k, i];

end
end
return

Team Management :: RelativeIDsForReference()

The autonomous team formation and reference rollover operations are initiated in theUpdate function. Because
these actions are inherently distributed, however, their full functionality extends beyond theUpdate function and
includes the actions that are taken in response to the receipt of different messages. The flowchart for theUpdate
function is shown in Figure 4-3. See Figure 4-1 on page 20 for a legend of the various flowchart components.

Figure 4-3 . Team Management UpdateE n t e rU P D A T E
a u t o R e f R o l l o v e r = 1

a c q u i s i t i o n = 1
y e s a u t o n o m o u sr e f e r e n c e r o l l o v e ra u t o n o m o u sa c q u i s i t i o ny e s

TheautoRefRollover flag is set to true in response to a “command auto ref roll on” message, and is set to false
with a “command auto ref roll off” message. If true, the module carries out the steps shown in Figure 4-4 on the
following page.

37

4.6. GUIDANCE LAW CHAPTER 4. SOFTWARE MODULES

Figure 4-4 . Autonomous Reference Rollover

a u t o n o m o u sr e f e r e n c e r o l l o v e rE n t e r
o b t a i n c u r r e n t t i m e" t i m e N o w " a m I a r e l a t i v em e m b e r o f a t e a m ?a m R e l a t i v et r u e t r u e

f a l s ee x i t e x i tf a l s e

d o I h a v e t h e l e a s t a m o u n to f f u e l i n t h e t e a m ?a l l (m y R F P < t e a m R F P)
d o I h a v e s u f f i c i e n t l y l e s s f u e l t h a n t h e r e f e r e n c e ?m y R F P + r o l l o v e r R F P D i f f > = t e a m R F P (k R e f)

t e a m (k) . t e a m I DI D1
c o m m a n dr e f e r e n c er o l l o v e r

t r u e

s e n d m e s s a g e t oT e a m M a n a g e m e n to n r e f e r e n c e
t r u ee x i tf a l s e f a l s e

/ /

i s i t t i m e f o r a n o t h e r r o l l o v e r r e q u e s t ?t i m e N o w > t i m e L a s t R e f R o l l R e q > r o l l o v e r R e q W a i t T i m e
F i n d i n d e x " k " o f m y t e a m d a t as t r u c t u r e a r r a y t h a t c o r r e s p o n d st o " t e a m I D " .T e a m I D F o r R e l a t i v e

O b t a i n t h e r e m a i n i n g f u e lp e r c e n t a g e o f o t h e r t e a mm e m b e r s , " t e a m R F P " , f r o m t h eP a r a m e t e r D a t a b a s e . O b t a i n :t e a m R F P O b t a i n m y r e m a i n i n g f u e lp e r c e n t a g e , " m y R F P " , f r o m t h eP a r a m e t e r D a t a b a s e . O b t a i n :m y R F P
F i n d t h e i n d e x " k R e f " o f t h e" t e a m R F P " a r r a y t h a tc o r r e s p o n d s t o t h e r e f e r e n c e

s e t p a r a m e t e r :t i m e L a s t R e f R o l l R e q = t i m e N o w
4.6 Guidance Law

DFFGuidanceLaw

Scope

The purpose of the Guidance Law module is to define the desired relative trajectory of the spaceraft. This information
is supplied to the Control Law, which is responsible for achieving and maintaining the desired trajectory. The desired
trajectory for each spacecraft is defined with respect to its reference, and is expressed as a set of geometric goals.

The Guidance Law provides several features:

• Distributed assignment of geometric goals for a team

• Distributed assignment of geometric goals for a cluster

• Automatic computation of team goals based on high-level objectives

• Acquisition of all geometric goals in a hierarchy through a recursive search mechanism

• Automatic determination of safe trajectories upon addition to a team or cluster

• Redefinition of geometric goals to support autonomous reference rollovers in a multiple-team hierarchy

All of these features are supported in both circular and eccentric orbits.

38

CHAPTER 4. SOFTWARE MODULES 4.6. GUIDANCE LAW

Messages

The set of input messages that may be sent to the Guidance Law module is summarized in Table 4-21.

Table 4-21 . Input Messages

Message Name Data Source Module Description
resetGL - Command Process-

ing
Causes the module to run the Initialization func-
tion.

command zero drift - Command Process-
ing

Command the Guidance Law to compute a new
set of geometric goals that match the current tra-
jectory, but that have zero relative drift.

command achieve formation- Command Process-
ing, Guidance Law*

Command the previously specified formation
(type, size, etc.) to be achieved.

set assignmentMethod int Command Process-
ing

Sets the method to be used in the assignment pro-
cess (privileged == 1, optimal == 2).

set costMetric int Command Process-
ing

Sets the cost metric to be used for the privileged
assignment method.

set formationType int Command Process-
ing

Sets the formation type. Several types
are supported, and are defined in the
GenerateTeamGoals function.

set formationSize double Command Process-
ing

Sets the length of the formation baseline.

set formationOrientation matrix [3,1] Command Process-
ing

Sets the euler angles to rotate the specified geom-
etry through.

set formationLocation double Command Process-
ing

Sets the location in the orbit (true anomaly) where
the specified orientation is to occur.

set timeWindow window Command Process-
ing

Sets the time window data structure to use in ma-
neuver planning.

set nSPO int Command Process-
ing

Sets the number of samples per orbit to use for LP
planning algorithms.

set assignmentTimeLimit double Command Process-
ing

Sets the time limit (in seconds) for waiting for a
cost estimate response during a distributed assign-
ment process.

set assignmentAttemptLimit int Command Process-
ing

Sets the limit on the number of attempts for con-
ducting a distributed assignement process.

set minSepDistance double Command Process-
ing

Sets the minimum along-track separation distance
for autonomous goal selection.

set maxSepDistance double Command Process-
ing

Sets the maximum along-track separation distance
for autonomous goal selection.

set angularResolution double Command Process-
ing

Sets the angular resolution to be used in the assign-
ment algorithm.

set memberGoals geometry Command Process-
ing, Guidance Law*

Sets the desired geometric goals for the local
spacecraft.

set teamGoals team goals Command Process-
ing, Guidance Law*

Sets the desired geometric goal set for the team.

set clusterGoals team goals Command Process-
ing, Guidance Law*

Sets the desired geometric goal set for the entire
cluster.

inform cluster state state Guidance Law* Recursively provides the state information of the
reference to all relatives.

inform cluster cost estimate cost Guidance Law* Recursively provides the cost estimate of the rela-
tive (and all of its relatives) to the reference.

inform team cost estimate cost Guidance Law* Provides the cost estimate of a relative to the cap-
tain.

distribute clusterGoals team goals Guidance Law* Recursively provides the assigned goals to all
members of the cluster.

39

4.6. GUIDANCE LAW CHAPTER 4. SOFTWARE MODULES

Table 4-21 . Input Messages, contd.

Message Name Data Source Module Description
notify joined team int Team ManagementCauses the geometric goals to be computed auto-

matically once a team has been joined. Used dur-
ing the autonomous team formation process.

inform memberGoals geometry Guidance Law* Recursively provides the geometric goals of all
other spacecraft in the cluster. Sent in response to
a “request memberGoals” message. Used during
the autonomous team formation process.

update memberGoals for new
team

geometry Team ManagementCauses the geometric goals to be recomputed if
added to a new team. Used during the reference
rollover process.

inform new reference goals geometry Guidance Law* Provides the previous geometric goals of the new
reference. Used during the reference rollover pro-
cess.

reference change int [] Team ManagementInstructs the Guidance Law that it has become a
reference. Causes it to send an “inform new ref-
erence goals” message to all relative IDs. Used
during the reference rollvoer process.

clear memberGoals - Team ManagementClear the geometric goals.

The set of request messages that may be sent to the Guidance Law module is summarized in Table 4-22.

Table 4-22 . Request Messages

Message Name Source Module Description
get memberGoals Team ManagementReturn the geometric goals to the sender.
request memberGoals Guidance Law* Forward this message to all relative IDs (if any). Once all

have responded, reply with an “inform memberGoals” mes-
sage to the Guidance Law on the requesting spacecraft ID.

request memberGoals arr Team Manage-
ment*

Reply with an “inform memberGoals arr” message to the
Team Management module on the requesting spacecraft ID.

The set of output messages sent from the Guidance Law module to other modules is summarized in Table 4-23.

Table 4-23 . Output Messages

Message Name Data Destination ModuleDescription
transmit isl message ISL Management Transmit the attached message over the ISL to an-

other spacecraft.
get state - Coordinate Trans-

formation
Obtain the state information.

get fuelMass - Parameter DatabaseObtain the remaining fuel mass.
set goals - Control Law Sets the geometric goals.
get captain id - Team ManagementObtain the ID of the captain for the team on which

I am a relative.
get captain id for team int Team ManagementObtain the ID of the captain for the specified team

ID.
get member ids for member int Team ManagementObtain the IDs of all members for the specified

member ID.
get member ids for team int Team ManagementObtain the IDs of all members for the specified

team ID.
get relative ids for reference int Team ManagementObtain the IDs of all relatives for the specified ref-

erence ID.
get relative ids for team int Team ManagementObtain the IDs of all relatives for the specified

team ID.

40

CHAPTER 4. SOFTWARE MODULES 4.6. GUIDANCE LAW

Table 4-23 . Output Messages, contd.

Message Name Data Destination ModuleDescription
get relative status - Team ManagementObtain a true/false flag indicating whether I am a

relative.
get reference id for member int Team ManagementObtain the ID of the reference for the specified

member ID.
get reference id for team int Team ManagementObtain the ID of the reference for the specified

team ID.
get reference status - Team ManagementObtain a true/false flag indicating whether I am a

reference.
get local team data - Team ManagementObtain the set of team data structures of which I

am a member.
get team id for captain int Team ManagementObtain the ID of the team which has the specified

captain ID.
get team ids for member int Team ManagementObtain the IDs of all teams which have the speci-

fied member ID.
inform team cost estimate cost Guidance Law* Provides the cost estimate of a relative to the cap-

tain.
request memberGoals int [] Guidance Law* Request the geometric goals of a spacecraft, in-

cluding all of its relatives and/or superiors.
inform memberGoals geometry Guidance Law* Response to a “request memberGoals” message.
inform memberGoals arr geometry Team Manage-

ment*
Response to a “request memberGoals arr” mes-
sage.

set clusterGoals team goals Guidance Law* Recursively forward the cluster goals to all team
members.

inform cluster state state Guidance Law* Recursively provide the state information of the
reference to all relatives.

inform cluster cost estimate cost Guidance Law* Recursively provide the cost estimate of the rela-
tive (and all of its relatives) to the reference.

distribute clusterGoals geometry [] Guidance Law* Recursively provide the assigned goals to all mem-
bers of the cluster.

inform new reference goals geometry [] Guidance Law* Provide the previous geometric goals of the new
reference. Used during the reference rollover pro-
cess.

command achieve formation- Guidance Law* Forward the command to achieve the previously
specified formation (type, size, etc.) to the captain.

set teamGoals team goals Guidance Law* Provide the team goals to all relative team mem-
bers.

set memberGoals geometry Guidance Law* Provide the assigned geoemtric goals to all relative
team members.

Required Functions

The functions required by the Guidance Law module are listed in Table 4-24.

Table 4-24 . Required Functions

Function Name Description
iscell ISCELL(C) returns 1 if C is a cell array and 0 otherwise.
isfield ISFIELD(S,’name’) returns 1 if ’name’ is a field in the structure array S and 0

otherwise.
setdiff SETDIFF(A,B) when A and B are vectors returns the values in A that are not in

B.
unique UNIQUE(A) for the array A returns the same values as in A but with no repeti-

tions.

41

4.6. GUIDANCE LAW CHAPTER 4. SOFTWARE MODULES

Table 4-24 . Required Functions, contd.

Function Name Description
EccGeometry Structure Initialize an eccentric geometric goals data structure.
Geometry Structure Initialize a circular geometric goals data structure.
ISLMessage Structure Initialize an ISL message data structure.
FFEccEqns Compute the Hills frame state an a different point of the trajectory given the

initial state, initial and final true anomaly, and eccentricity
AutoFormGeometry Define new geometric goals for a single satellite, such that any semi-major axis

difference is eliminated, and the new trajectory maintains a minimum separation
distance from all other team members trajectories in the team.

EstimateCost Estimate the weighted cost to achieve all specified unique target states (for a
circular reference orbit).

FFEccEstimateCost Estimate the weighted cost to achieve all specified unique target states (for an
eccentric reference orbit).

FFEccGenerateTeamGoals Generate a Team Goals data structure given the formation type, size, location,
and orientation.

GenerateTeamGoals Generate a Team Goals data structure given the formation type and size.
InitializeCostMatrix Given the team goals, initialize the cost matrix with the right size.
OptimalAssignment Assign target states to satellites using the optimal assignment method.
PopulateCostMatrix Fill in the single column of the cost matrix that corresponds to the given space-

craft ID.
PrivilegedAssignment Assign target states to satellites using the priveleged assignment method.
RestrictIDSet Given an initial set of relative spacecraft IDs, examine the constraints to deter-

mine which of these IDs should be included.
SetupAssignmentProblem Compute the set of parameters from the team goals that define the assignment

problem.
SortTeamGoals Sort the team goals structure so that fixed states appear before variable states.
AddGoals Add one set of geometric goals to the other.
DeltaElem2Goals Transform a mean element difference set to a circular geometric goal set.
FFEccDeltaElem2Hills Transform a mean element difference set to a Hills-frame state (for an eccentric

reference orbit).
FFEccHills2Goals Transform a Hills-frame state to a set of eccentric geometric goals
GeometryCirc2Ecc Convert a cicular goals structure to an eccentric goals structure.
GeometryEcc2Circ Convert an eccentric goals structure to a circular goals structure.
JD2SS1970 Convert Julian date to seconds since 1970.
RotateState Transform a circular geometric goal set by rotating it through a prescribed angle.
SubGoals Subtract two one set of geometric goals from the other.
IsCircGeom Determine whether a geometric goals data structure is of the circular type or not.
IsEccGeom Determine whether a geometric goals data structure is of the eccentric type or

not.
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.
Hills2DeltaElem Transform a Hills-frame state to mean element differences.
OrbRate Compute the mean orbit rate from the semi-major axis.
M2Nu Compute the true anomaly from the mean anomaly.
BuildRequestIDs Member function. Build the set of IDs to forward “request memberGoals” mes-

sages to.
FormatGoals Member function. Ensure goals have the proper format for the eccentricity.
MapGoalsToSats Member function. Map geometric goals to satellites.
PrepareMemberGoals Member function. Prepare member goals in response to recursive “request mem-

berGoals” message.
ReduceClusterGoals Member function. Reduce the cluster goals array by excluding the goal sets that

correspond to member IDs that are on the same team of which I am a relative.

42

CHAPTER 4. SOFTWARE MODULES 4.6. GUIDANCE LAW

Member Variables

The member variables for the Guidance Law module are listed in Table 4-25.

Table 4-25 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
awaitingTeamCostEst int Flag indicating whether I am awaiting cost estimates for a

team assignment
amCaptain int Flag indicating whether I am a captain
provideCostEstimate int Flag indicating if I am to provide a cost estimate to the cap-

tain
newTeamGoals int Flag indicating whether new team goals have been received
responded int [] Array of IDs that have responded with an “inform team cost

estimate” message
zeroDrift int Flag indicating whether to achieve zero-drift
achieveFormation int Flag indicating whether to achieve the previously specified

formation
joinedTeam int Flag indicating whether a new team has been joined
teamJoined int ID of team that has been joined
achievingFormation int Flag indicating whether a formation is currently being

achieved
assignmentAttempts int Counter for the number of times a distributed assignment

process has been attempted
assignmentTime double Time that the distributed assignment process was last initi-

ated (SS1970)
newReferenceGoals int Flag indicating whether previous goals of the new reference

have been received
nMemberGoalsRequested int Number of geometric goal sets requested from other mem-

bers
nMemberGoalsResponded int Number of members that have responded with a geometric

goals set
awaitingMemberGoals int Flag indicating whether I am awaiting geometric goals from

other members
requestedOtherMemberGoals int Flag indicating whether I have requested geometric goals

from other members
haveMemberGoals int Flag indicating whether geometric goals have been assigned
newMemberGoals int Flag indicating whether new geometric goals were just re-

ceived
window window Time window data structure for maneuver planning
memberGoals geometry Geometric goals data structure defining the desired relative

trajectory
teamGoals team goals Team goals data structure defining the desired trajectories for

a team
clusterGoals team goals Team goals data structure defining the desired trajectories for

the cluster
formationType int Desired formation type. Several types are supported, and are

defined in theGenerateTeamGoals function.
formationSize double Desired formation size (km)
formationLocation double Desired location in the orbit where the specified formation

geometry is to occur (rad)
formationOrientation matrix [3,1] Euler angles describing the desired orientation of the forma-

tion geometry at “formationLocation”

43

4.6. GUIDANCE LAW CHAPTER 4. SOFTWARE MODULES

Table 4-25 . Member Variables, contd.

Variable Name Data Description
fuelWeightExponent double Fuel weighting exponent (for promoting equal fuel usage)
assignmentMethod int Which assignment method to use (1==privileged, 2==opti-

mal)
costMetric int Which cost metric to use with the privileged assignment

method (1==minimum, 2==average)
minSepDistance double Minimum along-track separation distance for autonomous

goal computation (km)
maxSepDistance double Maximum along-track separation distance for autonomous

goal computation (km)
assignmentTimeLimit double Maximum time to wait for a cost estimate response during a

distributed assignment process (sec)
assignmentAttemptLimit int Maximum number of times to attempt a distributed assign-

ment process
angularResolution double Angular resolution to be used for the assignment algorithm

(rad)
eTol double Eccentricity tolerance (treat as circular orbit below, eccentric

above)
nSPO int Number of samples per orbit to use in LP maneuver planning
otherMemberGoals geometry [] Array of geometric goals for other members in the cluster
memberGoalsRequested int Flag indicating whether geometric goals were requested of

me
memberGoalsRequestingID int ID of spacecraft that requested geometric goals of me
memberGoalsRequestedFARR int Flag indicating whether geometric goals were requested of

me in support of an autonomous reference rollover
memberGoalsRequestingIDFARR int ID of spacecrfat that requested geometric goals of me in sup-

port of an autonomous reference rollover
newClusterGoals int Flag indicating whether new cluster goals have been received
clusterCostEstimates cost [] Array of cost estimate data structures used in the distributed

assignment of cluster goals
clusterGoalsSentToIDs int [] Array of IDs that cluster goals have been sent to
clusterRespondedIDs int [] Array of IDs that have responded with a cost estimate for

achieving cluster goals
clusterGoalsRelativeIDs int [] Array of relative IDs that must respond with cost estimates

to achieve the cluster goals
awaitingRefClusterState int Flag indicating whether I am awaiting the cluster-based state

of my reference
haveRefClusterState int Flag indicating whether I have received the cluster-based

state of my reference
awaitingClusterCostEst int Flag indicating whether I am awaiting cost estimates for

achieving cluster goals
refClusterState state Cluster-based state information of my reference
clusterGoalsAssigned int Flag indicating whether cluster goals have been assigned
clusterGoalsAssignment struct Data structure containing an array of cluster-based geometric

goals, and the corresponding spacecraft IDs
priorGoals geometry Previous geometric goals
oldRefGoals geometry Geometric goals of the previous reference
updateGoalsForNewTeam int Flag indicating whether to update the geometric goals in re-

sponse to joining a new team
initialFuelMass double Initial mass of fuel in all tanks (kg)
outgoing isl message [] Array of messages that are to be sent to the ISL Management

module at the next update

44

CHAPTER 4. SOFTWARE MODULES 4.6. GUIDANCE LAW

Functionality

The purpose of the Guidance Law module is to define the desired relative trajectory for the spacecraft. The Guidance
Law provides several features, including:

• Distributed assignment of geometric goals for a team

• Distributed assignment of geometric goals for a cluster

• Automatic computation of team goals based on high-level objectives

• Acquisition of all geometric goals in a hierarchy through a recursive search mechanism

• Automatic determination of safe trajectories upon addition to a team or cluster

• Redefinition of geometric goals to support autonomous reference rollovers in a multiple-team hierarchy

All of these features are supported in both circular and eccentric orbits.

This module, while designed to be as efficient and straightforward as possible, contains a considerable amount of
functionality. Much of this functionality is distributed in nature, in that the complete process consists of a series of
steps that are carried out on multiple spacecraft at different times. It is therefore best to describe the operations of
the module in a graphical setting. The flowchart for theUpdate function is shown in Figure 4-5. See Figure 4-1 on
page 20 for a legend of the various flowchart components. This simply illustrates the initial flow of logic that takes

Figure 4-5 . Guidance Law Update

U P D A T E

n e w T e a m G o a l sn e w C l u s t e r G o a l sp r o v i d e C o s t E s t i m a t e
t r u e n e w t e a m g o a l sn e w c l u s t e r g o a l sp r o v i d e c o s t e s t i m a t et r u et r u e

o b t a i n s t a t e d a t a f r o mC o o r d i n a t e T r a n s f o r m
F o r m a t G o a l sE n s u r e g o a l s a r ec o n s i s t e n t w i t he c c e n t r i c i t y

a w a i t i n g T e a m C o s t E s t a s s i g n t e a m g o a l sa l l T e a m C o s t E s t R e c dt r u e t r u e

a w a i t i n g M e m b e r G o a l s a u t o d e fi n e g o a l sn M e m b e r G o a l s R e q u e s t e d= =n M e m b e r G o a l s R e s p o n d e dt r u e t r u e
a w a i t i n g C l u s t e r C o s t E s t a s s i g n c l u s t e r g o a l sa l l C l u s t e r C o s t E s t R e c dt r u e t r u e c h e c k c o s t e s t i m a t et i m ef a l s e

m e m b e r G o a l s R e q u e s t e d r e c u r s i v e s e a r c h f o rm e m b e r g o a l st r u e
n e w R e f e r e n c e G o a l s u p d a t e g o a l s f o r n e wr e f e r e n c et r u e

the module into the various aspects of functionality during each update period. For example, thenewTeamGoals

45

4.6. GUIDANCE LAW CHAPTER 4. SOFTWARE MODULES

flag is set to true if a new set of team goals are either commanded or computed. If this flag is true, the module enters
the “new team goals” functional block, which is detailed in subsequent diagrams that are provided in the appendix.

Additional background material is provided in the following section.

Background

Formations are designed by combining several relative trajectories in such a way that a desired geometric configuration
is achieved. In order to realize a formation, each spacecraft must achieve one of the relative trajectories. It is typically
not important which spacecraft achieves which trajectory, as long as all desired trajectories are met so that the overall
formation geometry is realized. Therefore, the main function of the formation guidance law is that of trajectory
assignment. The objective is to achieve all desired trajectories in such a way that minimizes the total cost.

The guidance law designed for the DFF system operates at both the team and cluster level. The set of target states
for an individual team or for the entire cluster may be defined by the operator according to three different levels of
autonomy:

• Low Autonomy – The target state for each spacecraft is defined explicitly. It may be defined in Hill’s frame
coordinates, orbital element differences, or in terms of the geometric parameters. The control law immediately
tracks the new desired trajectory.

• Medium Autonomy – A set of geometric goals is supplied, where each goal set corresponds to a desired
trajectory. The guidance law works to find the optimal configuration, assigning each target to a different member
such that the total cost is minimized.

• High Autonomy – A few high-level objectives are supplied, such as a pre-defined formation type, size, and
orientation. The geometric goals for the team/cluster are computed online to meet the given objectives. Each
target is then assigned to a different member such that the total cost is minimized.

The guidance law is not used in the “Low Autonomy” case, as the target states are assigned directly from the operator.
At the medium and high autonomy levels, however, the targets are assigned on-orbit. The general procedure is as
follows:

1. The geometric goals for the team are either supplied to or computed by the team captain.

2. The captain distributes the team goals to all relative team members.

3. Each recipient uses the control law to estimate the cost to achieve all desired trajectories.

4. The vector of costs from each relative member is returned to the captain.

5. The captain assembles all cost vectors into a single cost matrix.

6. The captain applies an assignment algorithm to the cost matrix to find a solution that minimizes the total cost.

7. The captain sends out the newly assigned geometric goals to each relative team member.

The guidance law is therefore both distributed and centralized. The cost estimation is distributed across all satellites
in the team, but the assignment task is performed centrally, by the captain.

The total cost is defined as a weighted sum of the total delta-v’s for each spacecraft to achieve its target state. The
individual delta-v’s are weighted according to their remaining fuel percentage, in order to promote equal fuel usage
throughout the cluster. The cost for theith satellite to reach thejth target state is:

ci,j = f−x
i ×∆Vij (4.6-1)

46

CHAPTER 4. SOFTWARE MODULES 4.6. GUIDANCE LAW

wherefi is the remaining fuel percentage of theith spacecraft, andx > 0 is an adjustable parameter indicating the
importance of fuel equalization. The general problem is to assignN target states toM satellites such that the total
cost is minimized. This results in aM ×N cost matrix. In the case whereN 6= M , the cost matrix is made square by
adding rows or columns whose elements are much larger than the maximum value of the original matrix.

Two different approaches to solving the assignment problem have been implemented within the Guidance Law. The
first approach, termed the “optimal method”, involves searching over all possible permutations to find the one with the
minimum total cost. The total number of unique permutations isN ! for a square cost matrix of sizeN . This approach
is therefore computationally cumbersome asN becomes large, i.e.,≥ 8. The advantage is that a globally optimal
solution is guaranteed.

The second approach is called the “privileged method”. This technique requires considerably less computation, but
does not guarantee that a globally optimum solution is found. It consists of the following steps:

1. Determine the minimum projected cost of each satellite.

2. Determine which satellite has the highest minimum cost.

3. Assign that satellite to the target state corresponding to its minimum cost.

4. Repeat steps 1-2 for all remaining members and remaining target states.

Whichever method is used, the ground operator has the flexibility of restricting the target state distribution. Each target
state may be restricted so that it is considered by only a specific subset of team members. This is accomplished in the
cost estimation stage by forcingci,j to be an extremely large number for cases where thejth target state is not allowed
to be assigned to theith satellite. The assignment algorithm naturally avoids these high cost combinations.

The guidance law has also been designed to take advantage of the additional freedom available in circular reference
orbits. Here, we allow two types of target states to be identified:fixedandvariable. With the fixed target state, we
specify both the desired state and the point in the orbit at which it is to occur. With the variable target state, we consider
all possible states along the trajectory. When multiple target states are defined along the same trajectory, the original
phase separation is maintained as a constraint. The details of this “variable state” method require a lengthy discussion
and are beyond the scope of this paper.

In eccentric orbits, only fixed target states are possible. This is due to the restricted nature of the relative trajectories
in eccentric orbits, where each state along a given trajectory must occur at a particular true anomaly. In the cost
estimation stage of the guidance law, the fixed target state is defined by using the true anomaly associated with the
longest allowable maneuver duration.

When assigning target states to a cluster composed of multiple teams, they are initially uploaded to the cluster refer-
ence. They are then transmitted to all relatives in the top-level team. If any of these relatives also serves as a reference
for a lower-level team, it transmits the targets to its relatives, and so on in a recursive manner until the targets have been
sent to all spacecraft in the cluster. The target states are all defined with respect to the cluster reference, so the relative
state of each spacecraft must also be computed in the same frame. Therefore, along with the target state information,
each reference also sends its relative state with respect to the cluster reference. This enables each satellite to compute
its relative state in the cluster frame. Consider theith spacecraft in the cluster, whose reference is spacecraftj. Let
theC subscript denote the cluster frame, andT denote the team frame. The relative state of theith spacecraft in the
cluster frame is then:

xC,i = xC,j + xT,i (4.6-2)

wherexC,j is transmitted from spacecraftj, andxT,i is readily available from the Coordinate Transformation module.

Once each satellite has the target states and its relative state in the cluster frame, it computes the set of costs to achieve
all targets, and transmits the cost vector to back to its reference. Each reference in the hierarchy compiles the cost
vectors from its relatives and then sends the data up to its reference, until finally the cluster reference has the complete
set of cost data from all satellites in the cluster. The privileged assignment method is then used to quickly determine

47

4.6. GUIDANCE LAW CHAPTER 4. SOFTWARE MODULES

the best possible assignment, and the targets are distributed accordingly throughout the teams. The final step is for
each relative satellite to transform the target state to its team-based coordinate frame before reconfiguring to the new
trajectory.

48

CHAPTER 4. SOFTWARE MODULES 4.7. CONTROL LAW

4.7 Control Law

DFFControlLaw

Scope

The purpose of the Control Law module is to achieve and maintain the desired relative trajectory. This target trajectory
is provided by the Guidance Law as a set of geometric goals. Each time the module updates, it computes the error
between the desired relative position (defined by the geometric goals) and the measured relative position. If the error
in any axis exceeds the specified deadband, an impulsive maneuver is planned to reach the desired trajectory.

Messages

The set of input messages that may be sent to the Control Law module is summarized in Table 4-26.

Table 4-26 . Input Messages

Message Name Data Source Module Description
resetCL - Command Process-

ing
Causes the module to run the Initialization func-
tion.

command verify mode on - Command Process-
ing

Enables planned maneuvers to be implemented.

command verify mode off - Command Process-
ing

Causes planned maneuvers to be sent as telemetry
for verification.

command control off - Command Process-
ing

Deactivates the control law.

command control on - Command Process-
ing

Activates the control law.

command fine control off - Command Process-
ing

Disables fine control.

command fine control on - Command Process-
ing

Activates fine control.

command preemptive avoid-
ance off

- Command Process-
ing

Deactivates preemptive collision avoidance.

command preemptive avoid-
ance on

- Command Process-
ing

Activates preemptive collision avoidance.

set updatePeriodCL double Command Process-
ing

Sets the update period (in seconds).

set nominalThrust double Command Process-
ing

Sets the nominal thrust (in kiloNewtons).

set planHorizon double Command Process-
ing

Sets the time horizon for maneuver planning (in
seconds).

set minBurnDuration double Command Process-
ing

Sets the minimum achievable burn duration (in
seconds).

set maxDeltaV double Command Process-
ing

Sets the maximum achievable delta-v (in km/s).

set eTol double Command Process-
ing

Sets the eccentricity tolerance (in seconds).

set nSPOCoarse int Command Process-
ing

Sets the number of samples per orbit for coarse LP
maneuver planning.

set nSPOFine int Command Process-
ing

Sets the number of samples per orbit for fine LP
maneuver planning.

set coarseDeadband double Command Process-
ing

Sets the deadband for coarse control (in meters).

49

4.7. CONTROL LAW CHAPTER 4. SOFTWARE MODULES

Table 4-26 . Input Messages, contd.

Message Name Data Source Module Description
set fineDeadband double Command Process-

ing
Sets the deadband for fine control (in seconds).

set timeWindow window Command Process-
ing

Sets the time window data structure for maneuver
planning.

set postBurnSettleTime double Command Process-
ing

Sets the settle-time required after a burn (in sec-
onds).

set goals geometry Command Process-
ing, Guidance Law

Sets the geometric goals.

clear goals - Team ManagementClears the geoemetric goals.
maneuver approved - Collision Monitor-

ing
Informs the Control Law that the maneuver was
approved.

maneuver denied - Collision Monitor-
ing

Informs the Control Law that the maneuver was
denied.

reference active - Control Law* Informs the Control Law that the reference is ma-
neuvering.

reference idle - Control Law* Informs the Control Law that the reference is no
longer maneuvering.

notify team member added - Team ManagementInforms the Control Law that a team member has
been added, so that it may send a “reference ac-
tive” message to it if necessary.

pause - Team ManagementCauses the Control Law to temporarily forego its
update function.

resume - Team ManagementCauses the Control Law to resume its update func-
tion.

The set of request messages that may be sent to the Control Law module is summarized in Table 4-27.

Table 4-27 . Request Messages

Message Name Source Module Description
get goals - Return the geometric goals to the sender.

The set of output messages sent from the Control Law module to other modules is summarized in Table 4-28.

Table 4-28 . Output Messages

Message Name Data Destination ModuleDescription
transmit isl message ISL Management Transmit the attached message over the ISL to an-

other spacecraft.
set maneuver maneuver Delta-V Manage-

ment
Send the planned delta-v sequence to the Delta-V
Management module.

cancel maneuver int Delta-V Manage-
ment

Attempt to cancel the previously planned maneu-
ver.

get state - Coordinate Trans-
formation

Obtain the state information.

get fuelMass - Parameter DatabaseObtain the remaining fuel mass.
get reference status - Team ManagementReturn a true/false flag indicating whether I am a

reference.
get relative ids for reference int Team ManagementReturn the IDs of all relatives for the specified ref-

erence ID.

50

CHAPTER 4. SOFTWARE MODULES 4.7. CONTROL LAW

Table 4-28 . Output Messages, contd.

Message Name Data Destination ModuleDescription
reference active - Control Law* Inform the Control Law that the reference is ma-

neuvering.
reference idle - Control Law* Inform the Control Law that the reference is no

longer maneuvering.

Required Functions

The functions required by the Control Law module are listed in Table 4-29.

Table 4-29 . Required Functions

Function Name Description
IterativeImpulsiveManeuver description
LinOrbLQG Generate an LQG controller for linearized relative orbit dynamics.
Geometry Structure Initialize a circular geometric goals data structure.
ISLMessage Structure Initialize an ISL message data structure.
PlanningParameters Structure Initialize an parameters data structure for maneuver planning.
FFEccProp Compute the Hills frame state on another point of the trajectory given the inte-

gration constants.
IdealActuator Command the desired force to the IdealActuator. Only used in validating the fine

control.
FSWClock Access the flight software clock to obtain the current time.
FFEccGoals2Hills Compute the desired Hills frame state from the geometric goals and reference

orbit data.
GeometryCirc2Ecc Convert a cicular goals structure to an eccentric goals structure.
GeometryEcc2Circ Convert an eccentric goals structure to a circular goals structure.
Goals2Hills Computes the desired Hills frame state given the geometric goals and the refer-

ence orbital elements.
JD2SS1970 Convert Julian date to seconds since 1970.
Nu2TimeDomain Convert a relative state from the nu-domain to the time-domain.
SS19702JD Convert seconds since 1970 to Julian date.
IsCircGeom Determine whether a geometric goals data structure is of the circular type or not.
IsEccGeom Determine whether a geometric goals data structure is of the eccentric type or

not.
C2DZOH Perform a zero-order hold to convert continuous state-space matrices to discrete-

time.
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.
OrbRate Compute the mean orbit rate from the semi-major axis.
M2Nu Compute the true anomaly from the mean anomaly.
FormatGoals Member function. Ensure goals have the proper format for the eccentricity.

Member Variables

The member variables for the Control Law module are listed in Table 4-30.

Table 4-30 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)

51

4.7. CONTROL LAW CHAPTER 4. SOFTWARE MODULES

Table 4-30 . Member Variables, contd.

Variable Name Data Description
cancellationLeadTime double Amount of lead-time required to cancel a maneuver before

the first burn is applied (sec)
run int Flag indicating whether to run the update function or not

(changed with pause/resume messages)
haveGoals int Flag indicating whether geometric goals have been supplied
newGoals int Flag indicating whether new geometric goals have just been

received
maneuverPlanned int Flag indicating whether a maneuver has been planned
maneuverCompleted int Flag indicating whether the maneuver has been completed
referenceIdle int Flag indicating whether the reference is idle or active
controlEnabled int Flag indicating whether control is enabled
fineControlEnabled int Flag indicating whether fine control is enabled
cancelManeuver int Flag indicating whether a “cancel maneuver” command has

been received
verify int Flag indicating whether the module is in verification mode
goals geometry Geometric goals data structure
xK matrix [6,1] Controller state vector for fine control
coarseDeadband double Size of the position error deadband for coarse control (m)
fineDeadband double Size of the position error deadband for fine control (m)
window window Time window data structure to use for maneuver planning
settleTime double Minimum time required after a thruster firing before the ma-

neuver is considered complete (sec)
parameters plan param Planning parameters data structure
dryMass double Spacecraft dry mass (kg)
fuelMass double Total mass of fuel in all tanks (kg)
maneuver maneuver Maneuver data structure

Functionality

The Control Law module has one primary purpose – to keep the spacecraft on its desired relative trajectory. The
functionality of the Control Law is designed to serve this purpose.

The flowchart for theUpdate function is shown in Figure 4-6 on the next page. See Figure 4-1 on page 20 for a
legend of the various flowchart components. This diagram shows the logical steps that take place each update period
to cause the module to enter the various functional blocks. The steps taken in each of these functional blocks are
summarized below, and are also illustrated in subsequent flowcharts in the appendix.

When the Control Law updates, it first checks whether new goals have been received. If they have, the current state
is obtained from the Coordinate Transformation module, so that the eccentricity may be checked. If the eccentricity
exceeds the prescribed tolerance for circular orbits, then the geometric goals are defined using eccentric framework.
Otherwise, they are defined using the circular framework. The format of the goals is updated automatically using the
FormatGoals function.

The module then checks internal flags to determine whether a maneuver is in progress. If one is in progress, it then
checks whether it has been instructed to cancel a maneuver. If a cancellation request has been made, and the first burn
of the maneuver has not yet begun, then a burn cancellation command is issued to the Delta-V Manager. The maneuver
ID is sent as the attached data to this message. Next, the module compares the current time with the maneuver end
time (maneuver.tF) to determine if the current maneuver is now complete. If this condition is true, and if the local
spacecraft is a reference for another team, it sends a “reference idle” message to the relatives over the ISL.

The next stage of the update function is for maneuver planning. If control is enabled (controlEnabled true), there
is no maneuver in progress (maneuverInProgress false), and the reference spacecraft is idle (referenceIdle),

52

CHAPTER 4. SOFTWARE MODULES 4.7. CONTROL LAW

Figure 4-6 . Control Law Update

U P D A T E

n e w G o a l s t r u e n e w g o a l s
m a n e u v e r P l a n n e d c h e c k m a n e u v e rs t a t u sm a n e u v e r C o m p l e t e dt r u e f a l s e

r u n& &h a v e G o a l s

c o n t r o l E n a b l e dt r u ef a l s e
r e f e r e n c e I d l e

c o n t r o lt r u e

I s t h e r e a m a n e u v e r i n p r o g r e s s ?(m a n e u v e r P l a n n e d & & ! m a n e u v e r C o m p l e t e d)

then it proceeds to the next step. The state estimate is obtained from the Coordinate Transform module, and the fuel
mass is obtained from the Parameter Database. The desired relative state is computed from the geometric goals, and
then compared with the current relative state to compute the position error in Hill’s frame. If any axis of the position er-
ror exceeds the prescribed deadband for that axis, then a maneuver is planned. TheIterativeImpulsiveManeuver
function is used to plan a time-weighted fuel-optimal maneuver such that the largest delta-v in the sequence does not
exceed the prescribed maximum. This function is a high-level wrapper for both circular and eccentric-based optimal
maneuver planning functions. If a solution is found, and if the maneuver is to be achieved (verify false), it is then
sent to the Delta-V Management module in a “set maneuver” message.

If the Control Law has been instructed to observepreemptive collision avoidance, it first sends the maneuver data to
the local Collision Monitoring module in a “inform local maneuver” message. If the maneuver is approved for safety,
the Control Law will later receive a “maneuver approved” message, at which time it will then send the “set maneuver”
message to the Delta-V Management module to be processed.

53

4.8. COLLISION MONITORING CHAPTER 4. SOFTWARE MODULES

4.8 Collision Monitoring

DFFCollisionMonitoring

Scope

The Collision Monitoring module is tasked with both the monitoring of failed spacecraft for potential collisions and
the determination of whether reconfiguration trajectories are collision safe. This is implemented as two stages of
functionality within a single module’s update function.

Messages

The set of input messages that may be sent to the Collision Monitoring module is summarized in Table 4-31.

Table 4-31 . Input Messages

Message Name Data Source Module Description
command start monitoring int Command Process-

ing
Start monitoring the specified spacecraft.

command stop monitoring int Command Process-
ing

Remove the specified spacecraft from the monitor-
ing list.

reconfig IDs int array Guidance Law The IDs of the spacecraft maneuvering during the
reconfiguration.

inform local maneuver maneuver Control Law The maneuver of the local spacecraft.
reconfig denied int Collision Monitor Another Collision Monitor has denied the recon-

figuration, stop processing the maneuvers.
reconfig approved int Collision Monitor Another Collision Monitor has approved the re-

configuration, add it to the approved list.
distribute maneuver maneuver Collision Monitor The maneuver of a reconfiguring spacecraft.

The set of output messages sent from the Collision Monitoring module to other modules is summarized in Table 4-32.

Table 4-32 . Output Messages

Message Name Data Destination ModuleDescription
distribute maneuver maneuver Collision Monitor Transmit the local maneuver to the other reconfig-

uring spacecraft.
reconfig denied double Collision Monitor Inform the other spacecraft that a collision was de-

tected and the reconfiguration is denied.
reconfig approved int Collision Monitor Inform the other spacecraft that there are no poten-

tial collisions with this spacecraft and the reconfig-
uration is approved.

maneuver approved int Control Law Inform the Control Law that the maneuver has
been approved.

maneuver denied int Control Law Inform the Control Law that the maneuver has
been denied.

get state - Coordinate Trans-
formation

Obtain the state information.

get relative state wrt self - Coordinate Trans-
formation

Obtain the relative’s state with respect to the local
spacecraft.

get member ids for member int Team ManagementReturn the IDs of all members for the specified
member ID.

54

CHAPTER 4. SOFTWARE MODULES 4.8. COLLISION MONITORING

Required Functions

The functions required by the Collision Monitoring module are listed in Table 4-33.

Table 4-33 . Required Functions

Function Name Description
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.
PredictCollision Runs the collision monitoring algorithm by propagating forward for a fixed time

assuming no maneuvers.
CollisionSurvey Runs the collision monitoring algorithm for n spacecraft relative to the self space-

craft when the spacecraft are maneuvering.
CollisionMonAlg Collision monitoring algorithm which discretizes the orbit according to input

time vector and handles maneuvers through an acceleration matrix.
CollProbSet Calculates the probability of collision given a relative uncertainty ellipsoid.
DistantPtToEll Finds the distance (and the corresponding point) from a distant point to the clos-

est point on an ellipsoid.
Laguerre Finds polynomial roots using Laguerre’s method.
GVEErrorDynamics Compute continuous-time dynamics for Gauss’ variational equations
C2DZOH Create a discrete time system from a continuous system assuming a zero-order-

hold at the input.
WrapPhase Wrap a phase angle (or vector of angles) to keep it between -pi and +pi
UnwrapPhase Unwrap a vector of angular values to change continuously.
FFEccLinOrb Compute the continous A,B matrices for linearized relative motion in an eccen-

tric reference orbit.
Nu2M Converts true anomaly to mean anomaly.
M2Nu Computes the true anomaly from the mean anomaly.
M2NuAbs Computes the true anomaly from the mean anomaly without wrapping btwn -pi /

pi
OrbRate Computes the orbital rate.
DeltaEl2Alfriend Compute Alfriend differential elements from standard differential elements.
El2Alfriend Convert the standard orbital element set into an Alfriend orbital element set
DeltaElem2Hills Computes the Hills frame state from orbital element differences and reference

orbital elements.
Mag Compute the magnitude of a vector or matrix.
GenerateTimeVector Generate a time vector evenly spaced over true anomaly
VerifyCollStruct Ensure consistency in collision data structure fields.
ManeuverStruct2AccelVector Compute a 3xN acceleration vector from a “maneuver” data structure.

Member Variables

The member variables for the Collision Monitoring module are listed in Table 4-34.

Table 4-34 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
monitorIDs int List of spacecraft IDs for continuous collision monitoring
reconfigIDs int List of spacecraft which are maneuvering in the current re-

configuration
checkedIDs int List of reconfigIDs which have already been checked

55

4.8. COLLISION MONITORING CHAPTER 4. SOFTWARE MODULES

Table 4-34 . Member Variables, contd.

Variable Name Data Description
listApproved int List of reconfigIDs which have reported approval of the re-

configuration
processManeuvers int Flag indicating that a local reconfiguration survey is in

progress
mvrSent int Flag if local maneuver has been sent to other reconfiguring

spacecraft
allChecked int Flag indicating that all reconfigIDs have been checked by the

local Collision Monitor
collDetected int Flag indicating that a collision has been detected
approved int Flag indicating that reconfiguration has been approved lo-

cally and informing messages have been transmitted
warningLevel double Probability level above which a collision is considered to be

detected
lenSC int Spacecraft longest dimension (meters)
initBounds int Typical one-sigma bounds on relative measurement (km and

km/s)
scalev int Desired scale factor for ellipsoids, in sigma
predictTime int Prediction time period for continuous monitoring (sec)
nSamples int Number of samples per orbit for continuous monitoring
Pmin int Minimum probability corresponding toscalev , calculated
Ssc int Spacecraft hard-body bounding sphere corresponding to

lenSC , calculated
S0 int Initial ellipsoid corresponding to scalev and

initBounds , calculated

Functionality

As discussed in the Scope the Collision Monitor module has two distinct modes of functionality. These are performed
sequentially in the Update() function and each maintains its own list of monitored IDs.

The first mode, termed simplycollsion monitoringinvolves invoking continuous monitoring in the case of a spacecraft
failure in the cluster. Each functioning spacecraft is responsible for monitoring collisions between itself and any failed
spacecraft in true decentralized fashion. Commands to start monitoring a spacecraft are received from the ground. The
collision monitoring algorithm is then called onboard at each update period for each failed spacraft ID in the list. It
scans some amount of time into the future, such as one or two orbits, and determined the maximum probability of a
collision during that period. The prototype nominally assumes that no maneuvers are taking place during this period.

The second mode, termedpreemptive avoidanceor equivalently called acollision survey, is enacted on a team-basis
during a reconfiguration. The reconfiguration IDs are shared with the Collision Monitor by the Guidance Law once
a formation has been commanded to be achieved. Once each spacecraft has determined its delta-v sequence, they are
communicated throughout the team and each maneuvering spacecraft will check for possible collisions between itself
and the rest of the team. Non-maneuvering spacecraft do not perform any computations during the survey. Since
this is performed on a discrete basis, only for reconfigurations, it is similar to a single function call to the collision
monitoring algorithm, orn function calls forn satellite pairs when you consider the whole team.

This mode has the following steps:

• Receive reconfig IDs and begin waiting for maneuver data from self and others

• If self is maneuvering, survey self and all non-maneuvering spacecraft

• Check each maneuvering spacecraft as data arrives

• Transmit ’reconfig denied’ and ’maneuver denied’ messages for detected collisions

56

CHAPTER 4. SOFTWARE MODULES 4.8. COLLISION MONITORING

• Once all spacecraft are surveyed send ’reconfig approved’

• Once all maneuvering spacecraft report approved, send ’maneuver approved’

These steps require a number of logic flags as seen in the member variables list.

57

4.9. ISL MANAGEMENT CHAPTER 4. SOFTWARE MODULES

4.9 ISL Management

DFFISLManagement

Scope

The purpose of the ISL Management module is to facilitate inter-spacecraft communication via the inter-spacecraft
link (ISL). Messages that must be sent from one spacecraft to another are sent to this module, transmitted over the
ISL, retrieved by this module on the other spacecraft, and finally sent to the destination module.

Messages

The set of input messages that may be sent to the ISL Management module is summarized in Table 4-35.

Table 4-35 . Input Messages

Message Name Data Source Module Description
resetIM - Command Process-

ing
Causes the module to run the Initialization func-
tion.

set updatePeriodIM double Command Process-
ing

Sets the update period (in seconds).

set maxISLAttempts int Command Process-
ing

Sets the limit for consecutive attempts to send a
message over the ISL.

transmit isl message Team Management,
Guiance Law, Con-
trol Law

Provides a message data structure (from another
module) to be sent over the ISL.

receive isl message ISL Interface Plu-
gin

Provides a message data structure (from the ISL
subsystem) to be converted to a message and sent
to another module.

There are no request messages sent to the ISL Management module.

The set of output messages sent from the ISL Management module includes all of the messages that are sent from
other spacecraft via the ISL. In each case, a “receive” message is first obtained from the ISL Interface Plugin. The
“receive” message contains anisl message data structure, which is unpacked and sent to the destination module
on the local spacecraft.

Required Functions

The functions required by the ISL Management module are listed in Table 4-36.

Table 4-36 . Required Functions

Function Name Description
isfield ISFIELD(S,’name’) returns 1 if ’name’ is a field in the structure array S and 0

otherwise.
intersect INTERSECT(A,B) when A and B are vectors returns the values common to both

A and B.
DataSize Compute the size (in bytes) of a piece of data. Used to determine the amount of

data to be sent over the ISL.
ISLMessage Structure Initialize an ISL message data structure.
FSWClock Access the flight software clock to obtain the current time.
StateSensor Access the true simulation state. Used in “TransmitOverISL” function to deter-

mine capability of transmitting the data to the destination spacecraft.

58

CHAPTER 4. SOFTWARE MODULES 4.9. ISL MANAGEMENT

Table 4-36 . Required Functions, contd.

Function Name Description
JD2SS1970 Convert Julian date to seconds since 1970.
QTForm Transforms a vector opposite the direction of the quaternion.
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.
Dot Compute the dot product of two vectors.
Mag Compute the magnitude of a vector or matrix.
RouteMessage Member function. Attempt to route a message through a different spacecraft if

the destination cannot be reached.
TransmitOverISL Member function. Model the transmission of data over the ISL.
FormatMessage Member function. Ensure the supplied message structure has the proper and

complete format.

Member Variables

The member variables for the ISL Management module are listed in Table 4-37.

Table 4-37 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
memoryOn int Flag indicating whether to record messages sent over the

ISL. This is used for software testing and validation purposes
only.

maxISLAttempts int Maximum number of times to attempt transmitting to one
spacecraft before routing it through another spacecraft in-
stead

counter int Counter for generating unique ID tags for messages
counterLimit int Limit for message counter before resetting
bandwidth double Bandwidth capability of the ISL (kb/sec)
antennae struct Data structure of antennae information
messageQueueIn isl message [] Array of ISL message structures received from the ISL, to be

sent to local modules.
messageQueueOut isl message [] Array of ISL message structures received from local mod-

ules, to be sent over ISL.

Functionality

The ISL Management module serves as an interface between the other DFF software module and the ISL. Messages
that must be sent to another spacecraft attached as data to a “transmit” message and sent to this module. The message
data is then transmitted over the ISL. The act of transmission is simulated with a simple built-in model. When an
inter-spacecraft message is received at the ISL, the message is attached as data and sent in a “receive” message to the
ISL Management module. The message data is then unpacked and sent to the specified destination module.

The same approach will be taken in the MANTA-based DFF system. Figure 4-7 on the following page illustrates the
steps of the procedure. First, some module on spacecraft A prepares a message to be sent to spacecraft B. Next, it
converts the message to binary and attaches it to a new message called “transmit over isl”, which is sent to the ISL
Management module. The binary data is then submitted to the ISL hardware, and is transmitted to the destinaion
spacecraft. At this point, the data is retrieved from the ISL hardware on the destination spacecraft by the ISL Manage-
ment module. Finally, the binary data is converted back into a MANTA message and is sent to the appropriate module.

59

4.9. ISL MANAGEMENT CHAPTER 4. SOFTWARE MODULES

Figure 4-7 . Proposed ISL Management Approach in MANTA

1 " M o d u l e X " p r e p a r e s a M A N T A m e s s a g e d e s t i n e d f o r S p a c e c r a f t B a n d c o n v e r t i t t o b i n a r y d a t a .2 T h e d a t a i s s e n t i n a " t r a n s m i t " m e s s a g e t o t h e I S L M a n a g e m e n t m o d u l e .

S p a c e c r a f t A
I S LM a n a g e m e n t I S LM o d u l e X t r a n s m i t

S p a c e c r a f t B
I S LM a n a g e m e n tI S L r e c e i v e

3 T h e d a t a i s s e n t t h r o u g h t h e I S L I n t e r f a c e P l u g i n t o t h e I S L h a r d w a r e4 T h e d a t a i s t r a n s m i t t e d o v e r t h e I S L t o S p a c e c r a f t B
5 T h e I S L I n t e r f a c e P l u g i n r e t r i e v e s t h e d a t a f r o m t h e I S L h a r d w a r e a n d s e n d s i t i n a " r e c e i v e " m e s s a g e t o t h e I S L M a n a g e m e n t m o d u l e6 T h e I S L M a n a g e m e n t m o d u l e c o n v e r t s t h e b i n a r y d a t a t o a m e s s a g e a n d s s e n d s i t o u t

1 2
3 4 5 6

O n S p a c e c r a f t A :

O n S p a c e c r a f t B :

There is one significant difference between the prototype version of this module and how the MANTA version will be
designed. In the prototype, the ISL transmission model is built-in to the module. This is done for the sake of speed and
simplicity. In the real DFF system, the software will be completely stand-alone, and therefore the ISL transmission
model must be implemented externally (ie, in DSim).

This module also provides an extra layer of communication robustness by attempting to transmit a message multiple
times if the first attempt is not successful. This functionality requires that the ISL hardware be capable of immediately
informing the module whether the transmission attempt was sucessful or not. If the maximum number of attempts
are reached (defined by the uploadable parameter,maxAttempts), it then attempts to route the data through another
spacecraft. This can help if the destination spacecraft is either out of range or out of view. The module attempts to
route data only through the local spacecraft’s team members. The current approach is simply to cycle through all team
members. It may prove more efficient to identify one or more spacecraft that are likely to be in range and in the field
of view of both the sender and the receiver. This would require maintaining a local copy of the relative state of all
team members.

In the prototype design, each “transmit” message that is sent to the ISL Module contains amessage data structure,
which is defined by theISLMessage Structure function. Upon the receipt of a “transmit” message, the data
is stored in amessage struct array calledmessageQueueOut . When the module updates, the messages in this
queue are sent on a FIFO basis via the “TransmitOverISL” function. The amount of data being transmitted each time
is monitored, so that, when the maximum bandwidth is reached, transmissions cease until the next update period.

When data is received at the local ISL, it is placed in a “receive” message and sent to the ISL Management module.
Upon the receipt of a “receive” message, the data is stored in a secondmessage struct array calledmessageQueueIn .
When the module updates, the messages in this queue are processed on a FIFO basis. First, the destination ID is
checked. If it matches this spacecraft’s ID, the message is sent to the appropriate module. Otherwise, the message is

60

CHAPTER 4. SOFTWARE MODULES 4.9. ISL MANAGEMENT

being routed, so it is added to themessageQueueOut array to be sent during the next update.

61

4.10. DELTA-V MANAGEMENT CHAPTER 4. SOFTWARE MODULES

4.10 Delta-V Management

DFFDeltaVManagement

Scope

The purpose of the Delta-V Management module is to process the impulsive delta-v sequences planned by the Control
Law and Collision Monitoring modules. It prepares and sends commands to fire the thruster(s) at the appropriate times
to achieve the desired delta-v. If necessary, it also computes the required attitude that the spacecraft must have for
each thruster firing, and notifies the Atttitude Management module. This is necessary in spacecraft configurations that
do not have omin-directional thrust capability, so that the entire spacecraft must slew to a particular attitude to orient
the thruster(s) in the proper direction for a burn.

Messages

The set of input messages that may be sent to the Delta-V Management module is summarized in Table 4-38.

Table 4-38 . Input Messages

Message Name Data Source Module Description
resetDM - Command Process-

ing
Causes the module to run the Initialization func-
tion.

command alignment verifica-
tion on

- Command Process-
ing

Enables the alignment verification function.

command alignment verifica-
tion off

- Command Process-
ing

Disables the alignment verification function.

command star tracker con-
straint on

- Command Process-
ing

Commands the star-tracker pointing constraint to
be checked.

command star tracker con-
straint off

- Command Process-
ing

Commands the star-tracker pointing constraint to
be disregarded.

set updatePeriodDM double Command Process-
ing

Sets the update period (in seconds).

set alignmentTolerance double Command Process-
ing

Sets the alignment tolerance (in radians).

set maxSlewTime double Command Process-
ing

Sets the approximate maximum slew time (in sec-
onds).

set maneuver maneuver Control Law Sets the maneuver data (a time-tagged burn se-
quence) that was planned by the Control Law.

cancel maneuver int Control Law Attempt to cancel the previously planned maneu-
ver.

There are no request messages sent to the Delta-V Management module.

The set of output messages sent from the Delta-V Management module to other modules is summarized in Table 4-39.

Table 4-39 . Output Messages

Message Name Data Destination ModuleDescription
get state - Coordinate Trans-

formation
Obtain the state information.

get fuelMass - Parameter DatabaseObtain the remaining fuel mass.
get thrusterStatus int Parameter DatabaseObtain the status of the specified thruster.
get tankPressure int Parameter DatabaseObtain the pressure of the specified tank.
get reci - Relative NavigationObtain the ECI position vector.
get veci - Relative NavigationObtain the ECI velocity vector.

62

CHAPTER 4. SOFTWARE MODULES 4.10. DELTA-V MANAGEMENT

Table 4-39 . Output Messages, contd.

Message Name Data Destination ModuleDescription
add target orientation orientation Attitude Manage-

ment
Add the orientation data structure to the queue.

cancel slews int Attitude Manage-
ment

Cancel the previously commanded slews.

get qecitobody - ADCS Interface
Plugin

Obtain the ECI-to-body quaternion.

set hills force matrix [3,1] Ideal Actuator Set the force to be applied in Hills-frame (kN).
set hills force time window matrix [2,1] Ideal Actuator Set the time window during which the force is to

be applied (kN).
set pulsewidth double Thruster Interface

Plugin
Obtain the ECI-to-body quaternion.

Required Functions

The functions required by the Delta-V Management module are listed in Table 4-40.

Table 4-40 . Required Functions

Function Name Description
DeltaVCommand Structure Initialize a delta-v command data structure.
Orientation Structure Initialize an orientation data structure.
IdealActuator Command the desired force to the IdealActuator. Only used in validating the

software.
FSWClock Access the flight software clock to obtain the current time.
SS19702JD Convert seconds since 1970 to Julian date.
QForm Transforms a vector in the direction of the quaternion.
QHills Generate the quaternion that transforms from the ECI to the Hills frame.
QMult Multiply two quaternions.
QPose Transpose a quaternion.
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.
Dot Compute the dot product of two vectors.
ThrusterAlignment Computes body vectors to align with velocity and nadir for a thruster firing.
RVOrbGen Generate keplerian elements from an initial ECI position and velocity.

Member Variables

The member variables for the Delta-V Management module are listed in Table 4-41.

Table 4-41 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period (sec)
timeLastUpdate double Time at which the module updated last (JD)
preBurnVerification int Flag indicating whether alignment verification is enabled
starTrackerConstraint int Flag indicating whether the star-track pointing constraint

should be applied
alignmentTolerance double Allowable angular error in alignment for a thruster-firing

(rad)
uStarTrackerBody matrix [3,1] Boresight vector of star-tracker in body frame

63

4.10. DELTA-V MANAGEMENT CHAPTER 4. SOFTWARE MODULES

Table 4-41 . Member Variables, contd.

Variable Name Data Description
minAngularSep double Minimum allowable angular separation between star-tracker

boresight and bright bodies (rad)
maxSlewTime double Approximate time it takes the spacecraft to slew 180 deg

(sec)
dryMass double Spacecraft dry mass (kg)
nTanks int Number of fuel tanks
tank struct [] Data structure array of fuel tank information
commandInQueue burn [] Array of burn commands (from the maneuver data structure)

to be processed
commandOutQueue dv command[] Array of thruster commands to be sent out
ideal int Flag indicating whether ideal actuation is to be used. This is

used for software validation purposes only.
idealForce matrix [3,1] Force to be applied in the case of ideal actuation (N). This is

used for software validation purposes only.
leadTime double Amount of lead-time to use in commanding the thrusters

(sec)

Functionality

The functionality of the Delta-V Management module is straightforward. Each time a “set maneuver” message is
received from the Control Law, the included burn data is stored in an array,commandInQueue . Each time the
module updates, it checks this queue. If it is not empty, it processes each entry of the queue, converting the data into
a dv commandstructure, which is described in Section A.14 on page 71. It contains the time at which to command
the burn, and the required burn duration (pulsewidth). Each structure is stored in a new array,commandOutQueue.
For each burn, anorientation structure is also computed and sent to the Attitude Management module in a “add
target orientation” message.

Later in the update function, the module checks thecommandOutQueue. The queue is processed in a FIFO manner.
If it is not empty, the first item in the queue is extracted. First, the current time is checked against the specified
command time. A user-defined lead time is also included to account for hardware delays. If the timing condition is
satisfied, it then checks thepreBurnVerification flag, which is a switch that may be toggled by the user. If
pre-burn verification is true, the module first checks the measured attitude with the desired attitude, and ensures that it
is within the prescribed tolerance before commanding the burn. If this verification is not activated, or if it is and the
pointing error is small enough, then the burn is commanded by sending the pulsewidth to the thruster model.

64

CHAPTER 4. SOFTWARE MODULES 4.11. ATTITUDE MANAGEMENT

4.11 Attitude Management

DFFAttitudeManagement

Scope

The purpose of the Attitude Management module is to command the ADCS software to achieve the specified orienta-
tion at the specified time. This functionality is required for spacecraft configurations that do not have omni-directional
thrust capability. In these cases, the entire spacecraft must be slewed to a particular attitude so that the thruster is
aligned in the proper direction for a burn.

Messages

The set of input messages that may be sent to the Attitude Management module is summarized in Table 4-42.

Table 4-42 . Input Messages

Message Name Data Source Module Description
resetAM - Command Process-

ing
Causes the module to run the Initialization func-
tion.

command coordination on - Command Process-
ing

Enables the distributed attitude coordination func-
tion.

command coordination off - Command Process-
ing

Disables the distributed attitude coordination func-
tion.

set updatePeriodAM double Command Process-
ing

Sets the update period (in seconds).

set maxSlewTime double Command Process-
ing

Sets the approximate maximum slew time (in sec-
onds).

add target orientation orientation Delta-V Manage-
ment

Causes the supplied orientation data structure to be
added to the queue.

cancel slews int Delta-V Manage-
ment

Cancels the previously commanded slews.

There are no request messages sent to the Attitude Management module.

All output messages of the Attitude Management module are sent to the ADCS Interface Plugin.

Required Functions

The functions required by the Attitude Management module are listed in Table 4-43.

Table 4-43 . Required Functions

Function Name Description
ACSPointingConversion Computes a body vector and an LVLH vector (to be aligned).
FSWClock Access the flight software clock to obtain the current time.
MessageQueue Display messages to a GUI while the software runs. Used for validation purposes

only.

Member Variables

The member variables for the Attitude Management module are listed in Table 4-44 on the following page.

65

4.11. ATTITUDE MANAGEMENT CHAPTER 4. SOFTWARE MODULES

Table 4-44 . Member Variables

Variable Name Data Description
iD int Unique spacecraft ID (positive)
updatePeriod double Update period
timeLastUpdate double Time at which the module updated last (JD)
solarArrayNormal matrix [3,1] Normal vector of the solar arrays in the body frame
maxSlewTime double Approximate time it takes the spacecraft to slew 180 deg

(sec)
coordination int Flag indicating whether attitude coordination is enabled
deltaVSlewInProgress int Flag indicating whether a slew is in progress
returnToNominalJD double Time at which to return to the nominal pointing mode (JD)
slewCommandQueue orientation [] Queue of slew commands to be processed

Functionality

The functionality of the Attitude Management module is straightforward. Each time an “add target orientation” mes-
sage is received, the associated data is stored at the end of a queue. The attached data is anorientation data
structure, which is described in Section A.15 on page 71. It includes the desired Hills-to-body quaternion, the time
at which this orientation should be achieved, and the length of time that it should be maintained. When the module
updates, the queue is checked. If it is not empty, the first item in the queue is extracted. If this item corresponds to
a new slew command that has not already begun, then the time is checked. The current time is checked against the
specified orientation time. A user-defined lead time is also included to account for time required to slew. If the timing
condition is satisfied, then the slew command is issued.

Two types of spacecraft configurations are supported: spin-stabilized and 3-axis stabilized. The software is initial-
ized with a flag that indicates the spacecraft configuration. For 3-axis stabilized spacecraft, the desired ECI-to-body
quaternion (qEBDes) is commanded to the ADCS IP. This quaternion is computed anew each update period, because
it changes slowly as the spacecraft traverses its orbit. It is found by performing multiplying the measured ECI-to-
Hills quaternion by the desired Hills-to-body quaternion. This is a quaternion multiplication operation. The measured
ECI-to-Hills quaternion is computed directly from the reference orbit ECI position and velocity. A code fragment is
provided below:

Listing 4.4 . DFFAttitudeManagement.m Computing the Target ECI-To-Body Quaternion

1 % compute a new target quaternion each update
2 %--
3 state = DFFCoordinateTransformation(’get state’,[],d.iD);
4 [r,v] = El2RV(state.el);
5 qEH = QHills(r,v); % current ECI to Hills quaternion
6 qEBDes = QMult(qEH, slewCommand.qHB);

Computing the Target ECI-To-Body Quaternion

For the spin-stabilized spacecraft, the desired right ascension and declination are commanded to the ADCS IP. These
are computed directly fromqEBDes using theQ2RADecfunction.

When a slew command is first issued, the module computes sets thedeltaVSlewInProgress flag to true, and then
records the time at which the slew command should end. It stores this time in the variablereturnToNominalJD . At
a later point in the update function, the module checks thedeltaVSlewInProgress flag to determine if a delta-v
slew is currently underway. If true, it compares the current time to thereturnToNominalJD time to determine
when the delta-v slew ends. Upon the completion, it commands the ADCS to return to sun-pointing mode and resets
thedeltaVSlewInProgress flag to false.

66

CHAPTER A. Data Structures

This section describes all of the data structures used in the DFF system.

A.1 Command Data

Thecommanddata structure is initialized with theCommandStructure function. It is used in conjunction with
the Command Processing module. A command list, which contains an array ofcommandstructures, is supplied to
the Command Processing module at the beginning of the simulation. The module then processes a command once the
mission-elapsed-time (MET) surpasses the command’s time-tag.

Table 1-1 . Command Data Structure

Field Name Data Description
timeTag double Time at which the command is to be processed (MET)
scID int Unique spacecraft ID
module char [] Name of the destination module
command char [] Name of the command message
data var Included data

A.2 Team Data

Theteam data structure is initialized with theTeam Structure function. It contains all of the data that completely
defines a team, including the team ID, the member IDs, the reference and captain IDs, and the level.

Table 1-2 . Team Data Structure

Field Name Data Description
teamID int Unique team ID
nMembers int Number of members in the team
memID int [nMembers] Array of member IDs
refID int ID of member serving as the reference
captainID int ID of member serving as the captain

67

A.5. ECCENTRIC GEOMETRY DATA APPENDIX A. DATA STRUCTURES

Table 1-2 . Team Data Structure, contd.

FieldName Data Description
level int Hierarchical level of the team (low number means high in the hierarchy)

A.3 State Data

The state data structure is initialized with theState Structure function. It contains a few different sets of
absolute and relative state information.

Table 1-3 . State Data Structure

Field Name Data Description
el matrix [1,6] Standard set of orbital elements
elA matrix [1,6] Alfriend set of orbital elements
dEl matrix [1,6] Orbital element differences in Alfriend format
xH matrix [6,1] Relative position and velocity in Hills frame
tM double Measurement time (SS1970)

A.4 Geometry Data

Thegeometry data structure is initialized with theGeometry Structure function. It contains the set of param-
eters that define the geometric goals for a repeating relative trajectory in a circular orbit.

Table 1-4 . Geometry Data Structure

Field Name Data Description
y0 double Along-track offset of center of relative motion (km)
aE double Semi-major axis of relative ellipse (km)
beta double Phase angle on relative ellipse at equator crossing, measured from -x axis to +y

axis (rad)
zInc double Maximum cross-track amplitude due to inclination difference (km)
zLan double Maximum cross-track amplitude due to right ascension difference (km)

A.5 Eccentric Geometry Data

Theecc geometry data structure is initialized with theEccGeometry Structure function. It contains the set
of parameters that define the geometric goals for a repeating relative trajectory in an eccentric orbit.

Table 1-5 . Eccentric Geometry Data Structure

Field Name Data Description
y0 double Along-track offset of center of relative motion (km)
xMax double Maximum radial separation (km)
nu xMax double True anomaly where maximum radial separation occurs (rad)
zMax double Maximum cross-track separation (km)
nu zMax double True anomaly where maximum cross-track separation occurs (rad)

68

APPENDIX A. DATA STRUCTURES A.8. TEAM GOALS DATA

A.6 Window Data

Thewindow data structure is initialized with theWindow Structure function. It defines the details of the time
window to be used in maneuver planning.

Table 1-6 . Window Data Structure

Field Name Data Description
startTime double Earliest allowable start time (SS1970)
nOrbMin int Minimum number of orbits that the maneuver may last
nOrbMax int Maximum number of orbits that the maneuver may last
nManeuvers int Total number of maneuvers to plan, between min and max durations
timeWeightExp double Exponent for weighting the cost with maneuver time

A.7 Planning Parameters Data

Theplan param data structure is initialized with thePlanningParameters Structure function. It defines
the set of adjustable parameters that are used in the maneuver planning process.

Table 1-7 . Planning Parameters Data Structure

Field Name Data Description
fNom double Nominal thrust capability (kN)
horizon double Minimum time required between planning and first burn (sec)
dTMin double Minimum achievable burn time (sec)
maxDeltaV double Maximum achievable delta-v for a single burn (km/s)
nSPOCoarse int Number of samples per orbit to use in coarse LP planning
nSPOFine int Number of samples per orbit to use in fine LP planning
eTol double Eccentricity tolerance

A.8 Team Goals Data

The team goals data structure is initialized with theTeamGoals Structure function. It contains the informa-
tion that defines the team goals for a circular orbit.

Table 1-8 . Team Goals Data Structure

Field Name Data Description
nU int Number of unique states
teamID int Team ID
geometry geometry [nU] Array of circular geometry structures
constraints constraints [nU]Array of constraints structures
dPhi double Angular resolution (rad)

69

A.11. CONSTRAINTS DATA APPENDIX A. DATA STRUCTURES

A.9 Eccentric Team Goals Data

Theecc team goals data structure is initialized with theEccTeamGoals Structure function. It contains the
information that defines the team goals for an eccentric orbit. It is similar to theteam goals structure, but it contains
eccentric geometric goals rather than circular geometric goals.

Table 1-9 . Eccentric Team Goals Data Structure

Field Name Data Description
nU int Number of unique states
teamID int Team ID
geometry ecc geometry [nU]Array of eccentric geometry structures
constraints constraints [nU]Array of constraints structures
dPhi double Angular resolution (rad)

A.10 Cost Estimate Data

Thecost data structure is initialized with theCostEstimate Structure function. It contains the estimated cost
to achieve a specified set of target states. This structure is used by the Guidance Law during the distributed assignment
process.

Table 1-10 . Cost Estimate Data Structure

Field Name Data Description
nU int Number of unique target states that costs were computed for
memID int Unique spacecraft ID
targetIndex int [nU] Array of indeces corresponding to unique target states
costLength int [nU] Length of the cost vector for each unique target state
cost matrix [1,nU] Cost vectors for all unique target states

A.11 Constraints Data

The constraints data structure is initialized with theConstraints Structure function. These structures
are contained within theteam goals andecc team goals data structure. Eachconstraints structure cor-
responds to an associatedgeometry structure. The purpose of this structure is to further define the associated
geometric goals, and to place restrictions on how those goals are assigned.

Table 1-11 . Constraints Data Structure

Field Name Data Description
variable int Flag indicating whether the associated geomtric goals are fixed (0) or variable

(1)
nRestrict int Number of members to restrict assignments to
restrictID int [nRestrict] Array of member IDs to restrict assignments to
nDuplicates int Number of duplicate states
phase double [nDuplicate]Phase offset of each duplicated state (rad)

70

APPENDIX A. DATA STRUCTURES A.15. ORIENTATION DATA

A.12 Burn Data

Theburn data structure is initialized with theBurnData Structure function. It contains the information needed
to define the time, direction and magnitude of a “burn”, or thruster-firing. An array ofburn structures is included in
themaneuver data structure.

Table 1-12 . Burn Data Structure

Field Name Data Description
t double Burn start time (SS1970)
dT double Burn duration (sec)
dV double Delta-v magnitude (km/s)
uX double Unit x-direction in Hills frame
uY double Unit y-direction in Hills frame
uZ double Unit z-direction in Hills frame
iD int Burn ID (matchesmaneuver ID)

A.13 Maneuver Data

Themaneuver data structure is initialized with theManeuver Structure function. It

Table 1-13 . Maneuver Data Structure

Field Name Data Description
achieve int Flag indicating whether to achieve the maneuver or not
nBurns int Number of impulsive burns in the maneuver
burnData burn [nBurns] Array of burn data structures
t0 double Maneuver start time (SS1970)
tF int Maneuver completion time (SS1970)
iD int Unique maneuver command ID

A.14 Delta-V Command Data

The dv commanddata structure is initialized with theDeltaVCommand Structure function. It is used in the
Delta-V Management module to prepare and send thrust commands to the propulsion system.

Table 1-14 . Delta-V Command Data Structure

Field Name Data Description
tank int Index of tank to be used
pulsewidth double Burn duration (sec)
jD double Julian date at which to send the command
iD int Delta-V command ID (matches themaneuver ID)

A.15 Orientation Data

Theorientation data structure is initialized with theOrientation Structure function. It contains the data
required to define a desired orientation for the spacecraft during thruster firings. These structures are generated in the

71

A.16. ISL MESSAGE DATA APPENDIX A. DATA STRUCTURES

Delta-V Management module and sent to the Attitude Management module.

Table 1-15 . Orientation Data Structure

Field Name Data Description
qHB matrix [4,1] Desired Hills-to-body frame quaternion for aligning the thruster
jD double Julian date at which to send the command
dT double Duration to remain at target orientation
iD int Orientation command ID (matches themaneuver ID)

A.16 ISL Message Data

The isl message data structure is initialized with theISLMessage Structure function. It is used in conjunc-
tion with the ISL Management module. Messages that are to be sent to another spacecraft are first packaged in a
isl message structure and sent with a “transmit” message to the ISL Management module.

Table 1-16 . ISL Message Data Structure

Field Name Data Description
sourceID int ID of the source spacecraft
destID int ID of the destination spacecraft
destModule char [] Name of the destination module
action char [] Name of the message to be sent
data var Included data
timeTag double Time at which the message is sent (SS1970)
routed int Flag indicating whether the message is being routed
attempts int Counter to keep track of the number of times transmission was attempted
historySourceID int [] History of spacecraft IDs that this message was routed through
historyTimeTag double [] History of times at which this message was transmitted (SS1970)

72

CHAPTER B. Flowcharts

This remainder of the appendix provides the flowchart diagrams that have been developed for the Control Law, Guid-
ance Law, Team Management and Collision Avoidance modules.

73

APPENDIX B. FLOWCHARTS

74

	Introduction
	Requirements
	System Overview
	Interfaces
	Software Architecture
	Software Module Design
	Running a Simulation
	Initializating the DFF Software
	Command Lists

	Software Modules
	Command Processing
	Parameter Database
	Relative Navigation
	Coordinate Transformation
	Team Management
	Guidance Law
	Control Law
	Collision Monitoring
	ISL Management
	Delta-V Management
	Attitude Management

	Data Structures
	Command Data
	Team Data
	State Data
	Geometry Data
	Eccentric Geometry Data
	Window Data
	Planning Parameters Data
	Team Goals Data
	Eccentric Team Goals Data
	Cost Estimate Data
	Constraints Data
	Burn Data
	Maneuver Data
	Delta-V Command Data
	Orientation Data
	ISL Message Data

	Flowcharts

