Jacobian:
-------------------------------------------------------------------------------
This function computes the Jacobian matrix for a right hand-side.
The central difference approximation good to O(h^2) is used.
For any function f(x,t) it will compute the f0 and a matrices.
f(x,t) � f(xOP,tOP) + a(xOP,tOP) x + �
funFcn is input as a character string 'xxxxx' and must be of the form
xdot = xxxxx ( x, t, {p1,p2,p3,p4,p5,p6,p7,p8,p9,p10})
which is the same form used in RK2 and RK4. tOP is optional. If not needed
pass [].
-------------------------------------------------------------------------------
Form:
[a, fOP] = Jacobian( funFcn, xOP, tOP, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10 )
-------------------------------------------------------------------------------
------
Inputs
------
funFcn 'function name'
xOP (n,1) State at the operating point
tOP Time
varargin Optional arguments
-------
Outputs
-------
a (n,n) Jacobian matrix of first partials
fOP (n,1) f(xOP,tOP) at the operating point
-------------------------------------------------------------------------------
Children: