KFilter:
-------------------------------------------------------------------------------
Mechanizes one step of a Kalman Filter with a forgetting factor
x[k+1] = phi*x[k] + gamma*u
y[k] = x[k] + k[k]*(z - h*x[k])
-------------------------------------------------------------------------------
Form:
[x, p, k, y, pY] = KFilter( r, phi, q, h, x, z, p, gamma, u, s )
-------------------------------------------------------------------------------
------
Inputs
------
r (m,m) Measurement Covariance
phi (n,n) State transition matrix
q (n,n) Process noise covariance
h (m,n) Measurement matrix
x (n) Previous value of the state
z (m) Measurement vector
p (n,n) Covariance of xold
gamma (n,l) Input matrix
u (n) Deterministic input
s Forgetting factor 1 = don't, � = 1 stage filter
-------
Outputs
-------
x (n) Updated state this is at time k+1
p (n,n) Covariance of x
k (n,m) Kalman Gain matrix
y (m,1) Output at time k
pY (n,n) Covariance after the measurement update
-------------------------------------------------------------------------------
Copyright (c) 1993-2000 Princeton Satellite Systems, Inc.
All rights reserved.
-------------------------------------------------------------------------------
Children: