

Aircraft Control Toolbox
Learning Edition
 1

This software described in this document is furnished under a license agreement. The software
may be used, copied or translated into other languages only under the terms of the license
agreement.

Aircraft Control Toolbox Learning Edition Tutorial (November 2004)

© Copyright 1996-2004 by Princeton Satellite Systems, Inc. All rights reserved.

Any provision of Princeton Satellite Systems Software to the U.S. Government is with
“Restricted Rights” as follows: Use, duplication, or disclosure by the Government is subject to
restrictions set forth in subparagraphs (a) through (d) of the Commercial Computer Restricted
Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013, and in similar clause
in the NASA FAR Supplement. Any provision of Princeton Satellite Systems documentation to
the U.S. Government is with Limited Rights. The contractor/manufacturer is Princeton Satellite
Systems, Inc., 33 Witherspoon Street, Princeton, New Jersey 08542.

MATLAB is a registered trademark of The MathWorks, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

All other brand or product names are trademarks or registered trademarks of their respective
companies or organizations.

Printing History

July 2002 First Printing
January 2004 Second Printing
November 2004 Thirs Printing

Princeton Satellite Systems, Inc.
33 Witherspoon Street
Princeton, New Jersey 08542

Technical Support/Sales/Info:http://www.psatellite.com
2

T A B L E O F C O N T E N T S

Table of Contents

Chapter 1 Introduction 11

Key Features 12
Aircraft Properties 12
Control Design 13
Graphics and Simulation 14

Chapter 2 Fundamentals 15

Aircraft Properties Databases 16
Organizing Your Scripts 17
Functions 17

Chapter 3 Getting Help 19

MATLAB Help 20
Demos 21
File Help 23

Introduction 23
The List Pane 25
Edit Button 26
The Example Pane 26
Run Example Button 26
Save Example Button 27
Help Button 27
Quit 27

Searching in File Help 27
Find 27
Find All Button 28
 3

T A B L E O F C O N T E N T S

Search Headers Button 28
Search String Edit Box 28

Graphical User Interface Help 28
Technical Support 29

Chapter 4 Structures 31

Data Structures 32
Cell Arrays 33
Classes 34

Chapter 5 Simulation 37

Simulation 38
Introduction 38
Aspects of Simulation Models 38
Linear 40
Nonlinear 41

Creating an Interactive Simulation 42
Customizing a Simulation 48

Chapter 6 Graphics 51

GUIs 52
Plotting 57

Chapter 7 Designing Controllers 59

Using the block diagram 60
Linear Quadratic Control 60
Single-Input-Single-Output 64
4

T A B L E O F C O N T E N T S

Eigenstructure Assignment 68

Chapter 8 Implementing Controllers 71

A General Interface 72
Closed Loop Control 76

Introduction 76
Sensor Input 77
Actuator Model 77
Control Law 77

Pilot Input 83
Control Implementation 84

Chapter 9 References 87

About the References 88
Reference Books 88
Papers 89
 5

T A B L E O F C O N T E N T S

6

L I S T I N G S

List of Figures, Tables,
and Listings

Chapter 1 Introduction 11

Figure 1-1 Aircraft properties displayed from a database 13
Figure 1-2 Control GUI 14

Chapter 2 Fundamentals 15

Table 2-1 Aircraft Properties 16
Figure 2-1 F-16 Properties 16

Chapter 3 Getting Help 19

Figure 3-1 DemoPSS 21
Figure 3-2 Opening CASDesign 22
Figure 3-3 Results of ADSim 23
Figure 3-4 AircraftLE Folder 24
Figure 3-5 The file help GUI 24
Figure 3-6 Selecting from the alphabetical display 25
Figure 3-7 Using the hierarchical list 26
Figure 3-8 Search Results 27
Figure 3-9 Help GUI 28
Figure 3-10 PSS web technical support 29

Chapter 4 Structures 31
 7

L I S T I N G S

Figure 4-1 Object oriented programming terms 35

Chapter 5 Simulation 37

Table 5-1 Models 38
Listing 5-1 Fly.m initialization 42
Listing 5-2 Fly.m control initialization 43
Listing 5-3 Fly.m initializing the state vector 44
Listing 5-4 Fly.m Getting the linearized model 45
Listing 5-5 Fly.m setting up the HUD 45
Listing 5-6 Fly.m setting up the aircraft 3D display 45
Listing 5-7 Fly.m initializing ACPlot.m 46
Listing 5-8 Fly.m initializing the time display 46
Listing 5-9 Fly.m the simulation loop. 47
Listing 5-10 Fly.m simulation control 48
Listing 5-11 Fly.m plotting 48
Listing 5-12 Adding Actuator Dynamics 48
Listing 5-13 The actuator model 49

Chapter 6 Graphics 51

Figure 6-1 HUD.m 52
Figure 6-2 TimeGUI.m 53
Figure 6-3 DrawAC.m 54
Listing 6-1 HUD.m 55
Listing 6-2 TimeGUI.m 56
Listing 6-3 DrawAC.m 57
Listing 6-4 ACPlot.m 57
Listing 6-5 StateSpacePlot.m 58

Chapter 7 Designing Controllers 59
8

L I S T I N G S

Figure 7-1 Block diagram 60
Listing 7-1 Listing 61
Figure 7-2 Step response 62
Figure 7-3 LQ GUI 63
Figure 7-4 Step response from the GUI 64
Figure 7-5 SISO inputs 65
Figure 7-6 MapIO 66
Figure 7-7 SISO step response 67
Listing 7-2 CCVDemo 68
Figure 7-8 Eigenstructure design GUI 69
Figure 7-9 Step response with eigenstructure assignment 70

Chapter 8 Implementing Controllers 71

Listing 8-1 AircraftControl.m 72
Listing 8-2 Initialization 73
Listing 8-3 Update 74
Table 8-1 Excerpts from ACControl 75
Figure 8-1 Control and aircraft response 76
Listing 8-4 F16Actuator.m 77
Figure 8-2 Pitch Axis Control Augmentation System 78
Listing 8-5 Setting up the F16 model 79
Listing 8-6 Setting the initial state 80
Listing 8-7 Extracting the plant model for the design 81
Listing 8-8 State space simulation 82
Figure 8-3 Step response 83
Listing 8-9 Pilot pitch rate input 83
Listing 8-10 Initialization 84
Listing 8-11 Update 85
Figure 8-4 HUD after the pitch rate has been entered 86
Figure 8-5 Rate response to command 86

Chapter 9 References 87
 9

L I S T I N G S
10

C H A P T E R 1
INTRODUCTION
 11

C H A P T E R 1

Introduction
This chapter provides a brief introduction to the Aircraft Control Toolbox. The Aircraft Control
Toolbox, for use with MATLAB®, provides you with all of the tools needed to design and test con-
trol systems for aircraft—all within the MATLAB environment.

1.1 Key Features

The Aircraft Control Toolbox provides a comprehensive set of functions including:

• aircraft dynamics modeling including flexibility, actuator, sensor and engine dynamics,

• nonlinear models for military and commercial aircraft including subsonic and supersonic air-
craft with all data contained in a convenient database format,

• aircraft control system design and analysis including classical, eigenstructure assignment, out-
put feedback and many other design methodologies,

The Aircraft Control Toolbox allows you to design and test control systems in a matter of hours, not
days or weeks. You can simulate any kind of aircraft. Changes are easy to make and you have excel-
lent visibility into the resulting software.

Prototyping your control systems and simulation models will reduce both development time and
cost. MATLAB frees you from the expensive edit/compile/link cycle because it is interpretive and
fully interactive.

1.2 Aircraft Properties

Aircraft properties are easily accessible to speed your design work. The following plot shows the x-
axis aerodynamic force coefficient for a simplified F-16 model obtained by typing

 F16('cx coeff')

You can build your own databases to hold aircraft data using the F-16 database as a template. This
way all of your data is organized in one place.
12 Key Features

C H A P T E R 1

Introduction
Figure 1-1 Aircraft properties displayed from a database

Many models are included. For example, if you type

DC8('inertia')

ans =

 3090000 0 28000
 0 2940000 0
 28000 0 5580000

You get the inertia of a DC-8 aircraft.

1.3 Control Design

The toolbox provides a variety of design tools. The toolbox makes use of a state space class that
contains all of the information about a state space model including the matrix data, the type of state
space system (continuous or otherwise), as well as the names of all of the inputs, outputs and states.

The toolbox offers many control design tools, including

• Output feedback

• Single-input single-output

• Linear quadratic regulator

• Tracking control
Control Design 13

C H A P T E R 1

Introduction
• LQ/LTR

• Eigenstructure assignment

1.4 Graphics and Simulation

The toolbox allows you to fly any of your designs using its graphical user interface. The interface is
shown below.

Figure 1-2 Control GUI

Using the controls, you can fly your aircraft like any other flight simulator. In this simulator, how-
ever, the dynamics are extremely accurate. The nonlinear simulation allows you to add flexible air-
craft components, sensor and actuator dynamics, engine dynamics and disturbance dynamics.
States for inertia, mass and center-of-gravity are included for vehicles in which the mass properties
change significantly. The simulation uses an ellipsoidal earth model so you can simulate aircraft
from the ground up into space.

The simulation function will also automatically linearize the nonlinear dynamics and generate a
statespace model. In addition, a trimming algorithm is included which can trim your aircraft in a
variety of flight modes.
14 Graphics and Simulation

C H A P T E R 2
FUNDAMENTALS
 15

C H A P T E R 2

Fundamentals
This chapter gives you some basic information about the Aircraft Control Toolbox, including: how
to use the built-in databases, how the functions are designed, and an introduction to coordinate
frames and attitude kinematics.

2.1 Aircraft Properties Databases

All aircraft properties are stored in databases that can be accessed through text-based commands.
The toolbox comes with a predefined database of aircraft properties. The following table lists all of
the databases included in the toolbox.

All properties in databases are accessed by passing a text string to the database.

To plot an F16 statespace model type:

F16('cx coeff')

Figure 2-1 F-16 Properties

Table 2-1 Aircraft Properties

File Name Type Description

F16.m Nonlinear Tables of aerodynamic coefficients for a simplified F16
model.

DC8.m Stability Deriva-
tives

Longitudinal and lateral dynamics.

-10
0

10
20

30
40

50

-30

-20

-10

0

10

20

30
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Alpha (deg)Elevator (deg)

cX
16 Aircraft Properties Databases

C H A P T E R 2

Fundamentals
2.2 Organizing Your Scripts

It is important to organize your scripts carefully in order to make them readable and easy for other
people to use.

The scripts supplied with this package are always organized as:

Header

%---
inr = F16('cx coeff');

%---
Your design code

Since repetitively accessing a database can cause your simulation to be slow, it is recommended
that you define local variables to contain the constants or database items.

Variables should always have meaningful names. We recommend the C convention:

word1Word2Word3

where the beginning of each word after the first is capitalized. If a word is abbreviated the first letter
is still capitalized. For example

rPM

is revolutions per minute. Meaningful variable names reduce the need for comments.

Function names should always begin with a capital letter to distinguish functions from variables.
The standard MATLAB functions do not follow this convention.

2.3 Functions

Many of the functions in the toolbox will produce a plot if it is called with no output arguments. In
some cases, you do not need any input arguments to get useful plots due to built in default values
for the inputs.

Many of the functions in the toolbox are compatible with MATLAB 4.x or earlier. However, many of
the newer functions make extensive use of data structures and are only compatible with versions 5.x
Organizing Your Scripts 17

C H A P T E R 2

Fundamentals
or newer. We recommend that you get the latest version of MATLAB since in the future we will
make even more extensive use of data structures and other object oriented features.
18 Functions

C H A P T E R 3
GETTING HELP
 19

C H A P T E R 3

Getting Help
This section shows you how to use the help systems built into PSS Toolboxes. There are five
sources of help. The first is the standard MATLAB help, the second is the demo functions, the third
is the file help function, the fourth is the graphical user interface help system and the fifth is online
resources.

3.1 MATLAB Help

You can get help for any function by typing

help functionName

For example, if you type

help c2dzoh

you will see the following displayed in your MATLAB command window:

 Create a discrete time system from a continuous system
 assuming a zero-order-hold at the input.
 Given
 .
 x = ax + bu

 Find f and g where
 x(k+1) = fx(k) + gu(k)

 Form:
 [f, g] = C2DZOH(a, b, T)

 Inputs

 a Plant matrix
 b Input matrix
 T Time step

 Outputs

 f Discrete plant matrix
20 Matlab Help

C H A P T E R 3

Getting Help
 g Discrete input matrix

All PSS functions have the standard header format shown above.

3.2 Demos

If you type DemoPSS you will see the following GUI.

Figure 3-1 DemoPSS

The list on the left-hand-side is hierarchical. The GUI checks to see which directories are in the
same directory as DemoPSS and lists all directories and files. This allows you to add your own
directories and demo files.

Click on +AC to open the directory. The + sign changes to - and the list changes. Then click on
+ACControl.
Demos 21

C H A P T E R 3

Getting Help
Figure 3-2 Opening CASDesign

If you would like to look at, or edit, the script, hit “Show the Script.” Select CASDesign.m
and hit “Run The Demo.” If you let it run to completion, several plots will appear. The follow-
ing is the last plot.
22 Demos

C H A P T E R 3

Getting Help
Figure 3-3 Results of ADSim

3.3 File Help

3.3.1 Introduction
The FileHelp function gives you access to the headers of all of the functions in the toolbox. You can
browse the headers and try out examples associated with each function. You can also edit the exam-
ples, create new examples and save them into the help database.

As a reference, the PSSToolboxes folder looks like the following figure.

Q

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q

Time (sec)
File Help 23

C H A P T E R 3

Getting Help
Figure 3-4 AircraftLE Folder

When you type FileHelp the FileHelp GUI appears.

Figure 3-5 The file help GUI
24 File Help

C H A P T E R 3

Getting Help
There are five main panes in the window. On the left hand side is a display of all files in the toolbox
arranged in the same hierarchy as the PSSToolboxes folder. Below it is a list of all files in alphabet-
ical order. On the right-hand-side is the header display pane. Immediately below the header display
is the editable example pane. To its left is a template for the function. You can cut and paste the tem-
plate into your script or function.

3.3.2 The List Pane
If you click a file in the alphabetical list, the header will appear in the header pane. This is the same
header that is in the file. The headers are extracted from a.mat file so changes you make will not be
reflected in the file. If the file is a script, a template will not appear, as is the case for this file.

Figure 3-6 Selecting from the alphabetical display

You can also use the hierarchical list. Any name with a + or - sign is a folder. Click on the folders
until you reach the file you would like. When you click a file, the header and template will appear.
File Help 25

C H A P T E R 3

Getting Help
Figure 3-7 Using the hierarchical list

3.3.3 Edit Button
This opens the MATLAB edit window for the function selected in the list.

3.3.4 The Example Pane
This pane gives an example for the function displayed. Not all functions have examples. The edit
display has scroll bars. You can edit the example, create new examples and save them using the but-
tons below the display. To run an example, push Run Example button.

You can include comments in the example by using the percent symbol.

3.3.5 Run Example Button
Run the example in the display. Some of the examples are just the name of the function. These are
functions with built-in demos. Results will appear either in separate figure windows or in the MAT-

LAB Command Window.
26 File Help

C H A P T E R 3

Getting Help
3.3.6 Save Example Button
Save the example in the edit window. Pushing this button only saves it in the temporary memory
used by the GUI. You can save the example permanently when you Quit.

3.3.7 Help Button
Open the help system.

3.3.8 Quit
Quit the GUI. If you have edited an example, it will ask you whether you want to save the example
before you quit.

3.4 Searching in File Help

3.4.1 Find
Type in a name in the edit box and push Search File Names.

Figure 3-8 Search Results
Searching in File Help 27

C H A P T E R 3

Getting Help
All files with “Att” appear in the alphabetical list.

3.4.2 Find All Button
Find all returns to the list of the functions.

3.4.3 Search Headers Button
Search headers for a string. This function looks for exact, but not case sensitive, matches. The file
display displays all matches. A progress bar gives you an indication of time remaining in the
search.

3.4.4 Search String Edit Box
This is the search string. Spaces will be matched so if you type “attitude control” it will not match
“attitude control” (with two spaces.)

3.5 Graphical User Interface Help

Each graphical user interface (GUI) has a help button. If you hit the help button a new GUI will
appear.

Figure 3-9 Help GUI

You can access on-line help about any of the GUIs through this display. It is separate from the file
help GUI described above.
28 Graphical User Interface Help

C H A P T E R 3

Getting Help
The display is hierarchical. Any list item with a + or - in front is a directory. + means the directory
list is closed, - means it is open. Clicking on a directory name toggles the directory open or closed.
If you click on a file name in the list you will get a text display in the right-hand pane.

You can either search the headings or the text by entering a text string into the Search For edit box
and hitting the appropriate button. Restore List restores the list window to its previous configura-
tion.

3.6 Technical Support

Contact support@psatellite.com for email technical support. You can submit technical questions
and search the database of technical questions on the PSS website www.psatellite.com. The Tech
Support page is shown in Figure 3-10.

Figure 3-10 PSS web technical support
Technical Support 29

mailto:support@psatellite.com
http://www.psatellite.com

C H A P T E R 3

Getting Help
30 Technical Support

C H A P T E R 4
STRUCTURES
 31

C H A P T E R 4

Structures
MATLAB 5.x and 6.x have a number of useful new data types. These are used extensively in the
toolbox. All of the CAD and GUI functions use them.

This chapter discusses data structures and cell arrays and gives some tips on how to use them.

4.1 Data Structures

Data structures allow you to collect disparate data elements into a single variable. For example,
suppose you needed to pass the name of a sensor and its unit boresight vector to a function. You
might write

u = [1;0;0];

name = ‘Sensor A’
x = Sensor(name, u);

With data structures you can write

a = struct(‘u’, [1;0;0], ‘name’, ‘Sensor A’)

or

a.u = [1;0;0];

a.name = ‘Sensor A’

instead. Now your function call is

x = Sensor(a);

You can imagine how much more convenient passing a data structure is than passing a long list of
inputs.

If you type b = a;

b will be

b.u = [1;0;0];

b.name = ‘Sensor A’

You cannot add data structures or use arithmetic operations on them.
32 Data Structures

C H A P T E R 4

Structures
You can have an array of data structures. For example:

u(1).a = eye(3);
u(1).b = rand(3,4)
u(2).a = 6*eye(3);
u(2).b = rand(3,4);

4.2 Cell Arrays

A cell array is an array in which any element can contain any other type of data structure. For
example, you could implement the above data structure with a cell array

b{1} = [1;0;0];

b{2} = ‘Sensor A’;

Unlike data structures, you can concatenate cell arrays. The following

c = {a{:} b{:}}

would give you

c{1} = [1;0;0];

c{2} = ‘Sensor A’;
c{3} = [1;0;0];

c{4} = ‘Sensor A’;

You can perform operations on cell contents. For example

a{1} = diag([1 2 3]);
b{1} = [1;1;1];

when multiplied together give

[1;2;3];

Cell arrays are a convenient way of storing strings. For example you could write

a = [‘First String ’;’Second Long String’];

being careful to make sure they were the same length, or write
Cell Arrays 33

C H A P T E R 4

Structures
a{1} = ‘First String’; a{2} = ‘Second String’;

uicontrol functions will often take cell arrays of strings. It is convenient to lump uicontrol
properties into a cell array:

v = { 'parent', h.fig, 'fontunits', 'pixels', 'fontsize',
12, 'horizontalalignment', 'left' };

and call uicontrol as

uicontrol(v{:}, ...

4.3 Classes

Classes are a form of data structure in which both the data and the operations that can be done on
the data are defined together. The toolbox includes several classes. For example you might define a
class called names. You could then create the method “+” which would overload the MATLAB “+”
function so that if you let

a = names(‘Emily’);
b = names(‘Stuart’);

then

c = a + b;

would be the same as

c = names(‘Emily Stuart’)

names would be the class constructor and “+” is a method that overloads “+”.

An important aspect of a class is that you cannot get access to the internal data structure from out-
side of a class method. This allows the class designer control access to the data so that the user can-
34 Classes

C H A P T E R 4

Structures
not use it in an incorrect manner. Object oriented design terms related to classes are listed in the
following table.

Figure 4-1 Object oriented programming terms

Term Definition

class A data structure definition and functions that operate on that data structure.

constructor A method that creates an object of type class.

instance A variable of type class. In Matlab if you type x = 2 you create an instance of
class double.

method A function that is part of a class.

object An instance of a class. When you type x = 2, you create an object of class
double.

overloading Giving a meaning to an operation that is specific to a class. For example, in
the statespace class + means parallel connection of state space systems.

polymorphism When a function behaves differently for different types of inputs.
Classes 35

C H A P T E R 4

Structures
36 Classes

C H A P T E R 5
SIMULATION
 37

C H A P T E R 5

Simulation
This chapter describes how to use the Aircraft Control Toolbox to build simulations of your Air-
craft.

5.1 Simulation

5.1.1 Introduction
When we talk about simulation, it is convenient to break it into two categories, linear and nonlinear.
Aircraft dynamics are inherently nonlinear, and most aircraft actuators and sensors are nonlinear.
Nonetheless, it is usually possible to linearize the dynamics and devices about some operating point
where, in a sufficiently restricted region, the system behaves linearly. This is the basis for the linear
control laws developed in this toolbox. The toolbox uses the function AC.m for all aircraft simula-
tions. With appropriate plug-in functions it can perform very sophisticated simulations of anything
from a biplane to a single stage to orbit launch vehicle.

5.1.2 Aspects of Simulation Models
Aircraft simulations can range from simple three degree of freedom longitudinal dynamics models
to models that incorporate the dynamics of moving parts, aeroelasticity, dynamical engine models,
pilot dynamics and so forth. There are two major tools for simulation in the toolbox. One is to use
the statespace models for linear simulations. The other is to use the nonlinear simulation, AC.m.

Two convenient statespace simulation tools are Step.m and IC.m. The first does step responses and
the second does responses to an initial state vector. Another useful tool is MRS.m which computes
mean squared responses of a system to noise inputs.

The following table lists different features that simulation models can have and shows which ones
are available in AC.m.

Table 5-1 Models

Feature In AC? Description Uses

Rigid Body (6-
DOF)

4 Three rotational and three transla-
tional degrees of freedom. Six kine-
matic states (seven if quaternions are
used) are needed.

All aircraft

Flat Earth 4 Constant gravity. No earth curva-
ture.

Most aircraft

Ellipsoidal Earth 4 Includes rotation of the earth and
altitude dependent gravity.

Launch vehicles
38 Simulation

C H A P T E R 5

Simulation
Two demos show how to use AC.m with the F16.m database. The first is CTSim.m which simulates
a coordinated turn. The second is Fly.m which lets you fly the F16 using the heads up display,
HUD.m. The steps you take to set up a simulation are:

• Trim the model using ACTrim.m

• Initialize the model data structures and state vector using ACBuild.m and ACInit.m.

• Run AC.m.

• Get plot results with ACPlot.m

Rotating parts 4 Spinning parts, such as gas turbines
or a gatling gun on an A-10.

All aircraft with
engines.

Actuator Dynamics 4 Nonlinear models that relate com-
manded thrust, aileron angle, etc. to
the actual angle. Accommodates
lags, delays, limits.

All aircraft but not
always necessary for
preliminary designs.

Sensor Dynamics 4 Nonlinear models that relate mea-
sured quantity to its measurement.

See above

Flex 4 Bending of wings, etc. Important for evaluat-
ing aeroelastic effects.

Time varying iner-
tia and mass

4 As fuel is consumed the inertia and
mass change.

Launch vehicles.

Inertia and mass of
moving parts

On some aircraft (and on boosters
with large gimballed nozzle assem-
blies) the dynamics of moving parts
can be significant.

Light aircraft and some
boosters.

Detachable parts Bombs and missiles. Military aircraft.

Thermal effects Interaction of heating and aerody-
namics

Supersonic aircraft.

Table 5-1 Models

Feature In AC? Description Uses
Simulation 39

C H A P T E R 5

Simulation
5.1.3 Linear

5.1.3.1 Creating a State Space System

If you have your model in transfer function form it can be converted to state space form using

[a,b,c,d] = ND2SS(num, den);

num can have more than one row. To make it of type statespace

g = statespace(a, b, c, d);

If you have a nonlinear system expressed in the form

and f is a Matlab function in the form

xDot = F(x,u);

then

[a,b] = Jacobian('f',x,u);

5.1.3.2 Zero Order Hold

The simplest way to simulate a continuous time system is to discretize it using the zero order hold.
This toolbox gives two ways to do this. One is the standard zero order hold

[aD,bD] = C2DZoh(a,b,T);

and the simulation is

x = aD*x + bD*u;
y = c*x + d*u;

The second is the delta form of the zero order hold

[aD,bD] = C2DelZoh(a,b,T);

and the simulation is

ẋ f x u,()=
40 Simulation

C H A P T E R 5

Simulation
x = x + aD*x + bD*u;
y = c*x + d*u;

These approximations assume that the input is held constant over the interval T.

5.1.3.3 First Order Hold

An alternative approach is to discretize the system using a first order hold. This approximation
assumes that the input varies linearly from step k to step k + 1.

[aD,bD,cD,dD] = C2DFOH(a,b,T);

and the simulation is

x = aD*x + bD*u;
y = cD*x + dD*u;

5.1.4 Nonlinear
The toolbox provides several functions for nonlinear simulations. These functions do not vary the
step size automatically or perform any error testing. One has to be careful since a large integration
time step can introduce instabilities or artificial damping into systems.

The Aircraft Control Toolbox also provides a variable step size routine, RK45, and Euler, a first
order method.

Given the function

xDot = Fun(x,t,p1,p2...p10)

and time step h use either

x = RK2(‘Fun’, x, h, t, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10)

or

x = RK4(‘Fun’, x, h, t, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10)

t (time) and p1 through p10 are optional arguments. If you need more than 10 optional argu-
ments you can pack p1 through p10. For example if you need to pass two inertia matrices

p1 = [inertia1,inertia2];
Simulation 41

C H A P T E R 5

Simulation
5.2 Creating an Interactive Simulation

Fly.m is a complete, nonlinear, interactive simulation that uses all of the toolbox GUIs to allow you
to fly an F-16.

In this section we walk through the script Fly.m and explain in detail how it works. A summary of
how to set up simulation scripts has already been given above so we will jump right into the details.

Listing 5-1 Fly.m initialization

% Clean up
%---------
close all
clear all

% Global for the time GUI
%------------------------
global simulationAction
simulationAction = ' ';
% Global for the HUD
%-------------------
global hUDOutput
hUDOutput = struct('pushbutton1',0,'pushbutton2',0,'checkbox1',0,...
 'checkbox2',0,'checkbox3',0);
% F16 database
%-------------
d = ACBuild('F16');
d.theta0 = 0;
d.wPlanet = [0;0;0];
d.actuator.name = [];
d.aero.name = 'ACAero';
d.engine.name = 'ACEngine';
d.rotor.name = [];
d.sensor.name = 'ACSensor';
d.disturb.name = [];

% Load the standard atmosphere
%-----------------------------
load -ascii AtmData;

d.atmData = AtmData;
d.atmUnits = 'eng';
42 Creating an Interactive Simulation

C H A P T E R 5

Simulation
In Listing 5-1 on page 42 we clean up the workspace, define a global variable for TimeGUI.m and
build the aircraft data structure, d. The name fields are names of functions that implement different
aspects of the model. ACAero.m, ACEngine.m and ACSensor.m are models included with the tool-
box. You can write your own models and use AC.m as long as you adhere to the input/output con-
ventions for each of the functions. Type “help AC” for more information.

The last code loads data for the standard atmosphere and specifies the units as English (ft.).

The following code initializes the controls. These values trim the aircraft.

The state vector is specified in terms of angle-of-attack (alpha), sideslip (beta), and total velocity
(vT). These are converted into a body state vector by the function VTToVB. The cG, inertia and
mass are also states and are specified. The simulation uses quaternions and QECI converts the ini-
tial euler angles and position vector to the quaternion from ECI to the body frame. The engine
model has a single state and it is found by ACEngEq which takes the aircraft data structure (which
contains the control) and finds the engine equilibrium state at that control setting. There are no actu-
ator, sensor, flex or disturbance states so they are set to empty matrices.

The initial time is specified and the state vector, x, of type acstate is created using the constructor
acstate.

Listing 5-2 Fly.m control initialization

% Control
%--------
d.control.throttle = 0.1485;
d.control.elevator = -1.931;
d.control.aileron = -7e-8;
d.control.rudder = 8.3e-7;
Creating an Interactive Simulation 43

C H A P T E R 5

Simulation
The time step is step to 0.01 sec and the number of integration steps are computed.

Listing 5-3 Fly.m initializing the state vector

% Initial state vector
%---------------------
alpha = 0.03936;
beta = 4.1e-9;
vT = 502;
v = VTToVB(vT, alpha, beta);
cG = [0.3;0;0];
r = [2.092565616797901e+07+100;0;0];
eulInit = [0;0.03936;0];
q = QECI(r, eulInit);
w = [0;0;0];
wR = 160;
engine = ACEngEq(d, v, r);
mass = 1/1.57e-3;
inertia = [9497;55814;63100;0;-982;0];
actuator = [];
sensor = [];
flex = [];
disturb = [];

% Initial time and state
%-----------------------
t = 0;
x = acstate(r, q, w, v, wR, mass, inertia, cG, engine, actuator, sensor,
flex, disturb);

% Initialize the model
%---------------------
dT = 0.1;
nSim = 20/dT;
44 Creating an Interactive Simulation

C H A P T E R 5

Simulation
The linearized plant model is computed, just for information purposes. ACModes extracts the stan-
dard aircraft rigid body modes. ACModes only works if the aircraft is flying straight and level.

Setting up the displays is discussed in the graphics section. The settings for the control maximums

is used to translate mouse movement into control.

Listing 5-4 Fly.m Getting the linearized model

d = ACInit(x, d);
gLin = AC(x, 0, 0, d, 'linalpha');
aC = get(gLin, 'a');

% Display aircraft rigid body modes
%----------------------------------
ACModes(gLin);

Listing 5-5 Fly.m setting up the HUD

% Set up the HUD
%---------------
dHUD.atmData = AtmData;
dHUD.atmUnits = 'eng';

cHUD.control = d.control;
cHUD.elevatorMax = 90;
cHUD.aileronMax = 90;
cHUD.rudderMax = 90;
hHUD = HUD('init', dHUD, x, [], cHUD);

Listing 5-6 Fly.m setting up the aircraft 3D display

% Set up the aircraft display
%----------------------------
load gF16
hF16 = DrawAC('init', gF16, x);
Creating an Interactive Simulation 45

C H A P T E R 5

Simulation
Plotting is initialized by specifying the names of plots. ACPlot.m lists all available plots.

The time display is discussed in the graphics section.

Listing 5-7 Fly.m initializing ACPlot.m

% Initialize the plots
%---------------------
plots = ['Euler angles ';...
 'Quaternion ';...
 'Quaternion NED To B';...
 'Angular rate ';...
 'Position ECI ';...
 'Velocity ';...
 'Alpha ';...
 'Rudder ';...
 'Throttle ';...
 'Aileron ';...
 'Elevator '];

dPlot = ACPlot(x, 'init', plots, d, nSim, dT, nSim);

Listing 5-8 Fly.m initializing the time display

% Initialize the time display
%----------------------------
tToGoMem.lastJD = 0;
tToGoMem.lastStepsDone = 0;
tToGoMem.kAve = 0;
ratioRealTime = 0;
nTTGo = 10;
[ratioRealTime, tToGoMem] = TimeGUI(nSim, 0, tToGoMem, 0, dT, 'F16
Simulation');
46 Creating an Interactive Simulation

C H A P T E R 5

Simulation

;

The first section of the simulation loop updates the time display periodically. The next sections
update the HUD and extract the control settings. Data storage for the plots is done next. The 3D dis-
play is updated and then the simulation state is updated.

Listing 5-9 Fly.m the simulation loop.

for k = 1:nSim

 % Display the status message
 %---------------------------
 if(floor(k/nTTGo) == k/nTTGo)
 [ratioRealTime, tToGoMem] = TimeGUI(nSim, tToGo Mem, ratioRealTime, dT)
 end

 % HUD information
 %----------------
 hHUD = HUD('run', dHUD, x, hHUD, cHUD);

 % Controls
 %---------
 d.control = hHUD.control;

 % Plotting
 %---------
 dPlot = ACPlot(x, 'store', dPlot, d.control);

 % 3D Display
 %-----------
 hF16 = DrawAC('run', gF16, x, hF16);

 % The simulation
 %---------------
 x = AC(x, t, dT, d);
 t = t + dT;
Creating an Interactive Simulation 47

C H A P T E R 5

Simulation
This code shows the end of the simulation loop. This code implements commands from

TimeGUI.m.

The final snippet is the plotting code.

Run Fly.m to see how it all works!

5.3 Customizing a Simulation

You can add sensor, actuator and flex dynamics to the simulation by plugging in your own routines.
For example, the script CResponse.m shows the aircraft response to a variety of control inputs. The
script CActuator.m is the same script but with first order actuator dynamics added. Two things are
needed to add actuator dynamics. The first is a few changes to CResponse.m shown in Code Sam-

Listing 5-10 Fly.m simulation control

 % Time control
 %-------------
 switch simulationAction
 case 'pause'
 pause
 simulationAction = ' ';
 case 'stop'
 return;
 case 'plot'
 break;
 end
 HUDCntrl;
end

Listing 5-11 Fly.m plotting

% Create the plots
%-----------------
ACPlot(x, 'plot', dPlot);

Listing 5-12 Adding Actuator Dynamics

d.actuator = struct('name','F16Act','aileron',2,'elevator',2,'rudder',2);
actuator = [d.control.elevator;d.control.aileron;d.control.rudder];
48 Customizing a Simulation

C H A P T E R 5

Simulation
ple (5-12). The first line creates a data structure for the data needed by the actuator model. In this
case, the actuators are modeled as first order lags. The first member of the structure is the name of
the function that models the actuator. The last three members are the break frequencies for each
actuator model. The second line initializes the actuator state to the current value of the controls.

The next part is the actuator model shown in Code Sample (5-13). x is the actuator part of the state

vector, initialized above. controlInput is the control data structure, used to initialize the actu-
ator state vector above, and actuatorData is the actuator data structure, d.actuator.

Listing 5-13 The actuator model

function [dX, control] = F16Act(x, controlInput, actuatorData)
control.throttle = controlInput.throttle;
control.elevator = x(1);
control.aileron = x(2);
control.rudder = x(3);
dX = zeros(3,1);
dX(1) = actuatorData.elevator*(controlInput.elevator - x(1));
dX(2) = actuatorData.aileron *(controlInput.aileron - x(2));
dX(3) = actuatorData.rudder *(controlInput.rudder - x(3));
Customizing a Simulation 49

C H A P T E R 5

Simulation
50 Customizing a Simulation

C H A P T E R 6
GRAPHICS
 51

C H A P T E R 6

Graphics
This chapter describes how to use the Aircraft Control Toolbox graphics.

6.1 GUIs

The toolbox has three GUI windows that you can use in your simulations. Each GUI has an initial-
ization function call format and a run-time function call format. The three GUIs are shown in the
following figures. The first is HUD.m a “Head-Up Display” that allows you to control your aircraft

Figure 6-1 HUD.m
52 GUIs

C H A P T E R 6

Graphics
model. It can be used with any simulation. It has an airplane mode and a helicopter mode. You
move the sliders for pedal and throttle and move the box in the lower display by clicking on the new
desired location. For an airplane this causes the ailerons or elevators to move. The numerical dis-
plays on the left are Mach number, angle of attack in degrees, velocity, altitude and altitude rate.
The two push buttons and three checkboxes can be assigned names and functions by the user.

The second is TimeGUI.m which lists time statistics and allows you to control your simulation. By

pushing one of the three buttons you can stop the simulation, pause, or exit the simulation loop. If
you use one of the toolbox plotting routines, exiting will cause all existing data to plot.

Figure 6-2 TimeGUI.m
GUIs 53

C H A P T E R 6

Graphics
The last is the aircraft display, DrawAC.m which gives you a 3-dimensional picture of what your
aircraft is doing. Any aircraft model can be loaded into the display. The toolbox supplies a prepro-

cessed F-16 model as an example.

Figure 6-3 DrawAC.m
54 GUIs

C H A P T E R 6

Graphics
The following demos show you how to write the code in each case. All are excerpts from the demo

Fly.m. The dHUD and cHUD structures set up the HUD. dHUD has a third field, .type, that lets you
select helicopter or aircraft mode. If omitted, HUD defaults to aircraft. HUDCntrl updates the state
of the push buttons

Listing 6-1 HUD.m

% Global for the HUD
%-------------------
global hUDOutput
hUDOutput = struct('pushbutton1',0,'pushbutton2',0,'checkbox1',0,...
 'checkbox2',0,'checkbox3',0);

% Set up the HUD
%---------------
dHUD.atmData = AtmData;
dHUD.atmUnits = 'eng';

cHUD.control = d.control;
cHUD.elevatorMax = 90;
cHUD.aileronMax = 90;
cHUD.rudderMax = 90;
hHUD = HUD('init', dHUD, x, [], cHUD);
for k = 1:nSim
 % HUD information
 %----------------
 hHUD = HUD('run', dHUD, x, hHUD, cHUD);

 % Controls
 %---------
 d.control = hHUD.control;
 HUDCntrl;
end
GUIs 55

C H A P T E R 6

Graphics
The TimeGUI function uses a global variable, simulationAction, to communicate with the

script. It is the only global variable used in the toolbox.

Listing 6-2 TimeGUI.m

global simulationAction
simulationAction = ' ';

tToGoMem.lastJD = 0;
tToGoMem.lastStepsDone = 0;
tToGoMem.kAve = 0;
r = 0;
nTTGo = 10;
[r, tToGoMem] = TimeGUI(nSim, 0, tToGoMem, 0, dT, 'F16 Simulation');
for k = 1:nSim

 if(floor(k/nTTGo) == k/nTTGo)
 [r, tToGoMem] = TimeGUI(nSim, k, tToGoMem, r, dT);
 end

 switch simulationAction
 case 'pause'
 pause
 simulationAction = ' ';
 case 'stop'
 return;
 case 'plot'
 break;
 end
end
56 GUIs

C H A P T E R 6

Graphics
gF16 in the following demo contains the data structures for the F-16 3D model.

6.2 Plotting

The toolbox has two plotting functions ACPlot.m and StateSpacePlot.m. The former is for use with
the acstate class and the latter with the statespace data class. The following demo from Fly.m shows
how to use ACPlot.m. The variable “plots” contains the names of the desired plots. This example

will plot data on every pass through the loop but you can control that using the inputs to ACPlot.

Listing 6-3 DrawAC.m

% Set up the aircraft display
%----------------------------
load gF16
hF16 = DrawAC('init', gF16, x);
for k = 1:nSim
 % 3D Display
 %-----------
 hF16 = DrawAC('run', gF16, x, hF16);
end

Listing 6-4 ACPlot.m

% Initialize the plots
%---------------------
plots = ['Euler angles ';...
 'Quaternion ';...
 'Quaternion NED To B';...
 'Angular rate ';...
 'Position ECI ';...
 'Velocity ';...
 'Alpha ';...
 ‘Rudder ';...
 ‘Throttle ';...
 ‘Aileron ';...
 ‘Elevator '];

dPlot = ACPlot(x, 'init', plots, d, nSim, dT, nSim);
for k = 1:nSim
 dPlot = ACPlot(x, 'store', dPlot, d.control);
end
Plotting 57

C H A P T E R 6

Graphics
StateSpacePlot.m is similar. You must combine the outputs from HUD.m into u in this example.

Listing 6-5 StateSpacePlot.m

dPlot = StateSpacePlot('init', plots, nSim, nSim);
for k = 1:nSim

 % Controls
 %---------
 u = [hHUD.control.collective;...
 hHUD.control.longitudinalCyclic;...
 hHUD.control.lateralCyclic;...
 hHUD.control.rudder];
 dPlot = StateSpacePlot('store', x, [], u, dPlot);
end
58 Plotting

C H A P T E R 7
DESIGNING
CONTROLLERS
 59

C H A P T E R 7

Designing Controllers
This chapter shows how to design controllers using the ControlDesignPlugin. The three major
methodologies are discussed, Linear Quadratic, Eigenstructure assignment and Single-Input-Sin-
gle-Output. This section focuses on how to use the Control Designer GUI.

7.1 Using the block diagram

The block diagram from the control designer GUI is shown in the following figure.

Figure 7-1 Block diagram

When you select a block, all operations (including all of the simulation buttons, loading and saving)
apply only to that block. To work with the entire diagram click the highlighted block so that none
are highlighted. The blue box opens and closes the control loops. When it is blue (the default) the
system is closed. To open the loops, click the box.

The red circles are inputs and the green are outputs. When you are working with the entire system
you can select the input and output points by clicking on the red and green circles. The red circle on
the left is the command input, the one on the top is the disturbance input and the one on the right is
the noise input. The green output on the right is the state output and the green output on the left is
the measurement output.

7.2 Linear Quadratic Control

In this example we will design a compensator for a double integrator using full-state feedback. A
double integrator’s states are position and velocity. For full-state feedback, both must be available.
60 Using the block diagram

C H A P T E R 7

Designing Controllers
This example is automated using the LQFullState.m.

The script sets values for the controller design matrices. As you can see, you can also use LQC.m
outside of the design GUI. This script also creates the plant model, DoubleIntegrator.mat.

 Run the script and you will get the plot.

Listing 7-1 Listing

a = [0 1;0 0];
b = [0;1];
c = eye(2);
d = [0;0];

g = statespace(a, b, c, d, 'Double Integrator',...
 {'position', 'velocity'}, 'force', {'position', 'velocity'}
);

save('DoubleIntegrator', 'g');

q = eye(2);
r = 1;

w.q = q;
w.r = r;

gC = LQC(g, w, 'lq');
k = get(gC, 'd');

[a,b,c,d] = getabcd(g);
inputs = get(g, 'inputs');
inputs = strvcat(inputs, 'pitch rate');
g = set(g, a - b*k*c, 'a');
Step(g, 1, 0.1, 100);
Linear Quadratic Control 61

C H A P T E R 7

Designing Controllers
Figure 7-2 Step response

Now type ControlDesignPlugin. Select the plant and load in DoubleIntegrator.mat. Select
the control and then select the LQ tab. Select full state feedback. Enter q and r into the correspond-
ing input fields. The display will look as follows. Push create. The values for q and r are read in
from the workspace. This eliminates the need to type in potentially large matrices. When you read
in a controller these matrices are stored in the workspace.

States for Double Integrator

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
o

si
ti

o
n

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ve
lo

ci
ty

Time (sec)
62 Linear Quadratic Control

C H A P T E R 7

Designing Controllers
Figure 7-3 LQ GUI

Next click the control block so that you get the whole system. It will unhighlight. You can now do a
step response by pushing step.
Linear Quadratic Control 63

C H A P T E R 7

Designing Controllers
Figure 7-4 Step response from the GUI

7.3 Single-Input-Single-Output

Close and reopen the GUI and load in the double integrator plant. Next select the control block and
the SISO tab. Add the input position and output force. Then add a transfer function TF. Push the
button to position the transfer function input and force the output. Now select TF and click PD in
the SISOList. The GUI will look like the following.

States for LQ * Double Integrator

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
o

si
ti

o
n

0 10 20 30 40 50 60 70
-0.1

0

0.1

0.2

0.3

0.4

ve
lo

ci
ty

Time (sec)
64 Single-Input-Single-Output

C H A P T E R 7

Designing Controllers
Figure 7-5 SISO inputs

Hit the save button under the transfer function heading. Select the MapIO tab. You will see that the
inputs and outputs of the plant and controller are aligned properly.
Single-Input-Single-Output 65

C H A P T E R 7

Designing Controllers
Figure 7-6 MapIO

Under plant to sensor click velocity and hit remove since it is not used by the SISO controller.
When removed, velocity is prefixed by a star to indicate that it is part of the plant but unused. Click
the control box to select the whole plant and hit step. You will see the following step response.
66 Single-Input-Single-Output

C H A P T E R 7

Designing Controllers
Figure 7-7 SISO step response

States for TF

0 1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 s
ta

te
 1

Time (sec)
Single-Input-Single-Output 67

C H A P T E R 7

Designing Controllers
7.4 Eigenstructure Assignment

Run the script CCVDemo. This script generates the inputs for the eigenstructure assignment exam-

Listing 7-2 CCVDemo

% Plant matrix
%-------------
g = CCVModel;

% Desired eigenvalues and eigenvectors
%-------------------------------------
lambda = [-5.6 + j*4.2; -5.6 - j*4.2; -1.0;...
 -19.0; -19.5];
vD = [1-j 1+j 0 1 1;...
 -1+j -1-j 1 0 0;...
 0 0 0 0 0];

% We really want to decouple gamma
%---------------------------------
w = [1 1 1 1 1;...
 1 1 1 1 1;...
 100 100 1 1 1];

% The design matrix.
%--
d = [eye(3),zeros(3,2);... % Desired structure for eigenvector 1
 eye(3),zeros(3,2);... % Desired structure for eigenvector 2
 0 1 0 0 0;... % Desired structure for eigenvector 3
 0 0 1 0 0;... %
 0 0 0 1 0;... % Desired structure for eigenvector 4
 0 0 0 0 1]; % Desired structure for eigenvector 5

% Rows in d per eigenvalue
% Each column is for one eigenvalue
% i.e. column one means that the first three rows of
% d relate to eigenvalue 1
%---
rD = [3,3,2,1,1];

% Compute the gain and the achieved eigenvectors
%---
[k, v] = EVAssgnC(g, lambda, vD, d, rD, w);
68 Eigenstructure Assignment

C H A P T E R 7

Designing Controllers
ple. The model is already stored in CCVModel.mat.

lambda gives the desired eigenvalues, something that would be specified for simple pole placement.
vD are the desired eigenvectors which we can assign because we are using multi-input-multi-output
control. The weighting matrix shows how important each element of the desired eigenvector is to
the control design. Notice that the length of each eigenvector in vD is not the length of the state.
This is because we don’t care about most of the eigenvector values. The matrix d is used to relate
the desired eigenvector matrix to the actual states. rD indexes the rows in d to the eigenvalues.
Each row relates vD to the plant matrix. For example, rows 7 and 8 relate column 3 in vD to the
plant. In this case, vD(1,3) relates to state 2 and vD(2,4) relates to state 3.

Now open ControlDesignPlugin. Click on the plan box and load CCVModel.mat. Now click on the
Eigenstructure tab and enter lambda, vD, d, rD and w into the corresponding spots. The GUI will
look as follows.

Figure 7-8 Eigenstructure design GUI

Push Create. Next push Step. You will see the following plot.
Eigenstructure Assignment 69

C H A P T E R 7

Designing Controllers
Figure 7-9 Step response with eigenstructure assignment

States for Controller * CCV

0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

fl
ap

er
o

n
 d

ef
le

ct
io

n
 (

ra
d

)

Time (sec)
70 Eigenstructure Assignment

C H A P T E R 8
IMPLEMENTING
CONTROLLERS
 71

C H A P T E R 8

Implementing Controllers
This chapter shows how to implement controllers in the nonlinear simulation.

8.1 A General Interface

The function AircraftControl.m provides a general interface that can be used to structure
your control system. The following listing shows the entry point for AircraftControl.m

s is used for global memory. Notice that s is always returned from the internal functions. d is
passed to the function to initialize it. y is the output of the controller and s is the updated memory.

Listing 8-1 AircraftControl.m

y = AircraftControl(action, d)

persistent s

switch action
 case 'initialize'
 s = Initialize(d);

 case 'update'
 [y, s] = Update(s, d);
end
72 A General Interface

C H A P T E R 8

Implementing Controllers
This version of AircraftControl just sends commands open loop to the aircraft. The initialization
function is shown below.

The name of the actuator to be used is being passed to this routine. Details for the actuation of the
actuator are given in each case statement.

Listing 8-2 Initialization

function s = Initialize(d)

s.actuatorName = d.actuatorName;
s.control = d.control;

switch d.actuatorName
 case 'elevator'
 s.cDS.dT = 0.5;
 s.cDS.magnitude = 2;
 s.cDS.init = d.control.elevator;

 case 'throttle'
 s.cDS.dT = 3;
 s.cDS.magnitude = 0.1;
 s.cDS.init = d.control.throttle;

 case 'aileron'
 s.cDS.dT = 2;
 s.cDS.magnitude = 5;
 s.cDS.init = d.control.aileron;

 case 'rudder'
 s.cDS.dT = 0.5;
 s.cDS.magnitude = 2;
 s.cDS.init = d.control.rudder;

 otherwise
 error([d.actuatorName 'is not available'])
end
A General Interface 73

C H A P T E R 8

Implementing Controllers
The update function is called each time step and is shown below.

Listing 8-3 Update

function [y, s] = Update(s, d)

% This is just to test the actuators
%-----------------------------------
switch s.actuatorName
 case 'elevator'
 s.control.elevator = CInputs(d.t, 1, s.cDS, 'doublet');
 case 'throttle'
 s.control.throttle = CInputs(d.t, 1, s.cDS, 'doublet');
 case 'aileron'
 s.control.aileron = CInputs(d.t, 1, s.cDS, 'doublet');
 case 'rudder'
 s.control.rudder = CInputs(d.t, 1, s.cDS, 'doublet');
end

y = s.control;
74 A General Interface

C H A P T E R 8

Implementing Controllers
The data structure s.cDS is passed to CInputs.m which generates the control signature. The
output is the datastructure s.control. This function is shown as implemented in the
ACControl.m demo. The following listing shows relevant excerpts from that script.

The control and response are shown in the following figure.

Table 8-1 Excerpts from ACControl

% Control
%--------
d.control.throttle = 0.1485;
d.control.elevator = -1.931;
d.control.aileron = -7e-8;
d.control.rudder = 8.3e-7;

% Set up the control inputs
%--------------------------
AircraftControl('initialize', struct('actuatorName', actuatorName,
'control', d.control))

for k = 1:nSim

 % Controls
 %---------
 d.control = AircraftControl('update', struct('t', t, 'sensor', ACSensor(
x, d, 'meas')));
A General Interface 75

C H A P T E R 8

Implementing Controllers
Figure 8-1 Control and aircraft response

8.2 Closed Loop Control

8.2.1 Introduction
AircraftControl.m can be easily modified to do closed loop control. This example is based
on [Ref. 9-1] Example 4.5-1, a pitch rate control augmentation system. Note that in the reference
the authors implement the pitch augmentation system as an analog system.

There are four parts to this problem

• Sensor input

• Actuator Model

• Control law

• Pilot input

• Control implementation

In this case we are using the elevator as the actuator. Our inputs are the pitch rate and angle of
attack.

Alpha (deg)

1

1.5

2

2.5

3

A
lp

h
a

(d
eg

)

-2

-1

0

1
x 10

-3

B
et

a
 (

d
eg

)

0 1 2 3 4 5 6 7 8 9 10
502

502.5

503

V
T

 (

d
eg

)

Time (sec)

Elevator

0 1 2 3 4 5 6 7 8 9 10
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
le

va
to

r

Time (sec)
76 Closed Loop Control

C H A P T E R 8

Implementing Controllers
Our new control function is called AircraftControlCAS.m. The demo is F16CAS.m. The control
design script is CASDesign.m.

8.2.2 Sensor Input
The sensors are available from the function ACSensor.m. You will use sensor outputs 5, alpha
or angle-of-attack, and 3, q or pitch rate. This sensor model does not include any dynamics.

8.2.3 Actuator Model
The new actuator model is in F16Actuator.m shown in the following listing.

Each actuator is modeled as a simple lag. dX is the derivative vector and the control output is now
the state x which is the filtered control input.

8.2.4 Control Law
The controller, consisting of an integrator outer loop and two proportional inner loops is shown in
the following block diagram. Notice that the error between the command and measured pitch rate is
integrated while the pitch rate, and not the pitch rate error, is fed back through a proportional loop.

Listing 8-4 F16Actuator.m

[dX, control] = F16Actuator(x, control, d)

dX = [...
 (control.throttle - x(1))/d.throttleLag;...
 (control.elevator - x(2))/d.elevatorLag;...
 (control.aileron - x(3))/d.aileronLag;...
 (control.rudder - x(4))/d.rudderLag];

control.throttle = x(1);
control.elevator = x(2);
control.aileron = x(3);
control.rudder = x(4);
Closed Loop Control 77

C H A P T E R 8

Implementing Controllers
Figure 8-2 Pitch Axis Control Augmentation System

The measured pitch rate is subtracted from the commanded pitch rate and integrated in the outer
loop. The inner loop consists of two loops, an alpha and a pitch rate loop. The control law is

[8-1]

This controller is demonstrated in the script CASDesign.m. The F-16 model is augmented with
elevator dynamics represented by a simple lag.

When designing you need to

• set up the model

• set the initial state

• set the initial settings of the actuators

• linearize the model

• do your control design

• simulate

The script CASDesign.m does these things. The control design part is limited to using the gains
from the reference. The script does a state-space simulation of the controller and the dynamics as a
final check on the response.

A/C
kI

s

kα

τs 1+

kq

qc +

-

q

α

-

- -

u

u
kI

s
---- qC q–() kqq

kα

τs 1+
--------------α+ + 

 –=
78 Closed Loop Control

C H A P T E R 8

Implementing Controllers
The first three steps are the same in the design scripts and the simulation scripts. The simulation
scripts also usually linearize the model to extract the aircraft modes.

Setting up the model is shown in the following listing.

The data structure entries with the .name fields are the names of the plugin functions, such as the
F16Actuator described above. If there is no plugin you enter [].

Listing 8-5 Setting up the F16 model

% F16 database
%-------------
d = ACBuild('F16');
d.theta0 = 0;
d.wPlanet = [0;0;0];
d.actuator.name = 'F16Actuator';
d.aero.name = 'ACAero';
d.engine.name = 'ACEngine';
d.rotor.name = [];
d.sensor.name = 'ACSensor';
d.disturb.name = [];

% Load the standard atmosphere
%-----------------------------
d.atmData = load('AtmData');
d.atmUnits = 'eng';

% Actuator dynamics
%------------------
d.actuator.throttleLag = 4.9505e-02;
d.actuator.elevatorLag = 4.9505e-02;
d.actuator.aileronLag = 4.9505e-02;
d.actuator.rudderLag = 4.9505e-02;
Closed Loop Control 79

C H A P T E R 8

Implementing Controllers
The initial state is loaded as shown in the following listing.

Listing 8-6 Setting the initial state

% Control settings
%-----------------
d.control.throttle = 0.1385;
d.control.elevator = -0.7588;
d.control.aileron = -1.2e-7;
d.control.rudder = 6.2e-7;

% Initial state vector Corresponding to Nominal in
% Table 3.4-3 p. 139 of the reference
%---
altitude = 100;
alpha = 0.03691;
beta = -4.0e-9;
theta = 0.03991;
vT = 502;
v = VTToVB(vT, alpha, beta);

cG = [0.35;0;0];

r = [2.092565616797901e+07+altitude;0;0];

eulInit = [0;theta;0.00];

q = QECI(r, eulInit);
w = [0;0;0];

wR = 160;
engine = ACEngEq(d, v, r); % Engine state
mass = 1/1.57e-3;
inertia = [9497;55814;63100;0;-982;0];
actuator = [0;0;0;0];
sensor = [];
flex = [];
disturb = [];

% Initial time and state
%-----------------------
x = acstate(r, q, w, v, wR, mass, inertia, cG, engine, actuator,
sensor, flex, disturb);
80 Closed Loop Control

C H A P T E R 8

Implementing Controllers
We only want to work with the longitudinal dynamics for q and alpha. Extracting those state space
matrices is shown in the following listing.

The script doesn’t actually do the design, it just uses the gains in the reference and checks eigenval-
ues.

Listing 8-7 Extracting the plant model for the design

% Generate the state space model
%-------------------------------
stateName.actuator = {'Throttle Lag', 'Elevator Lag', 'Aileron Lag', 'Rudder
Lag'};
d = ACInit(x, d, stateName);
g = AC(x, 0, 0, d, 'linalpha');
aC = get(g, 'a');
cC = get(g, 'c');
bC = get(g, 'b');

kLon = [10 11 5 8 26];
kLonAQ = [11 8 26];
kAlphaSensor = 5;
kQSensor = 3;
kElevator = 2;

disp('The state space matrices for just alpha and q')
a = aC(kLonAQ,kLonAQ);
b = bC(kLonAQ,kElevator);
c = cC(kAlphaSensor,kLonAQ); % alpha only
Closed Loop Control 81

C H A P T E R 8

Implementing Controllers
The state space simulation code is shown below.

Note that in the reference the simulations are done with analog control. The resulting step response
is shown in the following figure. The controller and the plant are propagated separately. This makes
it much easier to go from the linear simulation to the nonlinear simulation.

Listing 8-8 State space simulation

dT = 0.1; % 10 Hz controller works well

[a, b] = C2DZOH(a, b, dT);
[aCAS, bCAS] = C2DZOH(aCAS, bCAS, dT);

nSim = 100;

xPlot = zeros(1,nSim);

qC = 1.0;
xCAS = [0;0];
x = [0;0;0];
y = [0;0];

for k = 1:nSim

 xPlot(k) = y(2);

 y = c*x;
 xCAS = aCAS*xCAS + bCAS*[y(1);y(2) - qC];
 yCAS = -(cCAS*xCAS + dCAS*y);
 x = a*x + b*yCAS;

end

t = (0:(nSim-1))*dT;

Plot2D(t, xPlot, 'Time (sec)', 'Q');
82 Closed Loop Control

C H A P T E R 8

Implementing Controllers
Figure 8-3 Step response

8.3 Pilot Input

Pilot input can be done in two ways. One is just to pass the desired input into your control function.
The second is to customize the HUD. In this example, we need a pitch rate input which is not an
available output on the standard HUD. We would like the pilot to be able to select a pitch rate and
then command the aircraft.

The pilot input is read in using the following code.

Listing 8-9 Pilot pitch rate input

% Pitch rate input
%-----------------
pilotPitchRateInput = struct('enter', hUDOutput.pushbutton1, 'value',
hHUD.control.text1);

% Controls
%---------
d.control = AircraftControlCAS('update', struct('t', t, 'sensor', ACSensor(
x, d, 'meas'), 'pilotPitchRateInput', pilotPitchRateInput));

Q

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q

Time (sec)
Pilot Input 83

C H A P T E R 8

Implementing Controllers
8.4 Control Implementation

The controller is implemented int AircraftControlCAS. As with the previous example there are two
parts, the initialization and the update.

The initialization is shown in the following listing.

Listing 8-10 Initialization

function s = Initialize(d)

kI = 1.5;
kQ = -0.5;
kAlpha = -0.08; % Notice this sign!
tauAlpha = 0.1;
s.aCAS = [-1/tauAlpha 0;0 0];
s.bCAS = [1/tauAlpha 0;0 -1];
s.cCAS = [kAlpha kI];
s.dCAS = [0 kQ];
s.xCAS = [0;0];

[s.aCAS, s.bCAS] = C2DZOH(s.aCAS, s.bCAS, d.dT);
s.control = d.control; % Nominal settings
s.pilotPitchRateInput = 0;
84 Control Implementation

C H A P T E R 8

Implementing Controllers
The update is shown below.

The results are shown in the following plot. A 1 deg/sec pitch rate is commanded using the first but-
ton on the HUD. You may need to push the button a couple of times. The line in disp above prints
into the command window to let you know that the command went through. The HUD looks like
the following figure.

Listing 8-11 Update

function [y, s] = Update(s, d)

% Pilot input
%------------
if(d.pilotPitchRateInput.enter)
 s.pilotPitchRateInput = d.pilotPitchRateInput.value;
 disp(sprintf('New pitch rate input %12.4f', s.pilotPitchRateInput))
end

% Input
%------
input = [d.sensor.alpha; d.sensor.q];

% Control implementation
%-----------------------
yCAS = -(s.cCAS*s.xCAS + s.dCAS*input);
s.xCAS = s.aCAS*s.xCAS + s.bCAS*[input(1);input(2) - s.pilotPitchRateInput];

% Output
%-------
s.control.elevator = yCAS;
y = s.control;
Control Implementation 85

C H A P T E R 8

Implementing Controllers
Figure 8-4 HUD after the pitch rate has been entered

The rate response is shown below.

Figure 8-5 Rate response to command

Rate (rad/sec)

0 2 4 6 8 10 12 14 16 18 20
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

R
at

e
(r

ad
/s

ec
)

Time (sec)

omegax
omegay
omegaz
86 Control Implementation

C H A P T E R 9
REFERENCES
 87

C H A P T E R 9

References
This chapter describes the references used in designing this toolbox.

9.1 About the References

References 1-4 are essential references for anyone designing aircraft control systems.

[Ref. 9-1] covers most of the material in this toolbox and explains in detail how to use all of the
control and simulation tools. It is an easily accessible text and is very well written. It covers all
forms of control design techniques that are applicable to aircraft. It is the ideal companion volume
for this toolbox.

[Ref. 9-2] covers the modeling of aircraft in great detail. If you are interested in building your own
simulation models, and creating your own properties databases, then this book is an excellent
source of information.

[Ref. 9-3] is a classic book with interesting approaches to SISO and MIMO control. It also has a
great deal of information on aircraft modeling.

[Ref. 9-4] covers the application of linear quadratic regulator techniques to both aircraft and space-
craft. It is very well written and clearly explains all of the fundamental principles of aerospace con-
trol design.

9.2 Reference Books

[9-1] Stevens, B. L. and F. L. Lewis (1992). Aircraft Control and Simulation, John Wiley &
Sons, New York.

[9-2] Ashley, H. (1974). Engineering Analysis of Flight Vehicles, Dover Publications, Inc., New
York.

[9-3] McRuer, D., Ashkenas, I., and D. Graham (1971). Aircraft Dynamics and Automatic Con-
trol, Princeton University Press.

[9-4] Bryson, A. E., Jr. (1994). Control of Spacecraft and Aircraft, Princeton University Press,
Princeton, New Jersey.

[9-5] Maciejowski, J.M. (1989). Multivariable Feedback Design. Addison-Wesley, Reading,
MA.

[9-6] Zhou, K., (1998). Essentials of Robust Control. Prentice-Hall, New Jersey.
88 About the References

C H A P T E R 9

References
[9-7] Dutton, K., S. Thompson, and B. Barraclough. (1997). The Art of Control Engineering.
Addison-Wesley, Reading, MA.

[9-8] Abzug, M. J., and E. E. Larrabee. (1997). Airplane Stability and Control. Cambridge Uni-
versity Press.

9.3 Papers

[9-9] Andry, A. N., Jr., Shapiro, E.Y. and J.C. Chung, “Eigenstructure Assignment for Linear
Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-19, No. 5.
September 1983.

[9-10] Hung, Y. S., and MacFarlane A.G.J. (1982). Multivariable Feedback: A Quasi-classical
Approach. Lecture Notes in Control and Information Sciences, Vol. 40. Berlin: Springer-
Verlag.

[9-11] Stein, G. and Athans, M. (1987). The LQG/LTR Procedure for Multivariable Feedback
Control Design. IEEE Transactions on Automatic Control, AC-32(2), 105-114.

[9-12] Anderson, B.D.O. and Mingori, D.L. (1985). Use of Frequency Dependence in Linear
Quadratic Control Problems to Frequency-Shape Robustness. J. Guidance and Control,
8(3), 397-401.

[9-13] MacFarlane, A.G.J. and Postlethwaite, I. (1977). The generalized Nyquist stability crite-
rion and multivariable root loci. Int. J. Control, 25(1), 81-127.

[9-14] Edmunds, J.M. (1979). Controls system design and analysis using closed-loop Nyquist
and Bode arrays. Int. J. Control, 30(5), 773-802.

[9-15] Doyle, J.C. and Stein, G. (1981). Multivariable Feedback Design: Concepts for a Classi-
cal/Modern Synthesis. IEEE Transactions on Automatic Control, AC-26(1), 4-16.

[9-16] Dorato, P. (1987). A Historical Review of Robust Control. IEEE Control Systems Maga-
zine, 7(2),44-47.

[9-17] MacFarlane, D.C. and Glover, K. (1989). Robust Control Design Using Normalized
Coprime Factor Plant Descriptions. Springer-Verlag, Berlin.

[9-18] Doyle, J.C. and G.J. Balas (1990). Identification of Flexible Structures for Robust Control.
IEEE Control Systems Magazine, 10(4),51-58.
Papers 89

C H A P T E R 9

References
[9-19] Fan, M.K.H and Tits A.L. (1988). m-form numerical range and the computation of the
structured singular value. IEEE Transactions on Automatic Control, AC-33, 284-289.

[9-20] Safonov, M. and Doyle J.C. (1984). Minimizing conservativeness of robustness singular
values. Multivariable Control: New Concepts and Tools (Tzafestas S.G., ed.), Dordrecht:
Reidel, 197-207.

[9-21] Doyle, J.C. (1978). Guaranteed margins for LQG regulators. IEEE Transactions on Auto-
matic Control, AC-23, 756-757.

[9-22] Horowitz, I. and Sidi, M. (1980). Practical design of feedback systems with uncertain mul-
tivariable plants. Int. J. Systems Sci., 11(7), 851-875.

[9-23] Horowitz, I. (1979). Quantitative synthesis of uncertain multiple input-output feedback
system. Int. J. Control, 30(1), 81-106.

[9-24] Park, M.S., Chait, Y. and Steinbuch, M. (1994). A New Approach to Multivariable Quanti-
tative Feedback Theory: Theoretical and Experimental Results. ASME J. DSMC.

[9-25] Hamel, P.G. (1994). Aerospace vehicle modeling requirements for high bandwidth flight
control. Aerospace Vehicle Dynamics and Control, Oxford University Press, Oxford, 1-32.

[9-26] Hyde, R.A. and Glover, K. (1994). Flight controller design using multivariable loop shap-
ing. Aerospace Vehicle Dynamics and Control, Oxford University Press, Oxford, 81-102.

[9-27] Carr, S.A. and Grimble, M.J. (1994). Comparison of LQG, H∞ and classical designs for
the pitch rate control of an unstable military aircraft. Aerospace Vehicle Dynamics and
Control, Oxford University Press, Oxford, 103-124.

[9-28] Gribble, J.J., et al. (1994). Helicopter flight control design: multivariable methods and
design issues. Aerospace Vehicle Dynamics and Control, Oxford University Press, Oxford,
199-224.
90 Papers

I N D E X
Index

Symbols

@acstate, 43

A

AC, 39
ACBuild, 39
ACControl.m, 75
ACEngEq, 43
ACInit, 39
ACModes, 45
ACPlot, 39, 46, 57
ACSensor.m, 77
ACTrim, 39
AircraftControl.m, 72, 76
AircraftControlCAS.m, 77
angle-of-attack, 77
artificial damping, 41

C

C, 17
C2DelZoh, 40
C2DFOH, 41
C2DZoh, 40
CASDesign.m, 77, 78
CASDesign.m, 22
CCVDemo, 68
CCVModel.mat, 69
cell array, 33
CInputs.m, 75
class, 34

class, 35
constructor, 35

instance, 35
method, 35
object, 35
overloading, 35
polymorphism, 35

ControlDesignPlugin, 60, 62
CTSim, 39

D

data structure, 32
database, 16
DC8, 16
DemoSC, 21
double integrator, 64
double integrator’, 60
DoubleIntegrator.mat, 61
DrawAC, 54

E

Eigenstructure assignment, 60
eigenvalues, 69
eigenvector, 69

F

F-16, 54, 78
F16, 16, 17
F16Actuator.m, 77
F16CAS.m, 77
FileHelp, 24
first order hold, 41
Fly, 42, 55
full-state feedback, 60
 91

I N D E X
G

global variable, 56
GUI, 52

H

help, 28
help system, 20
HUD, 47
HUD, 52

I

IC, 38
integration time step, 41

J

Jacobian, 40

L

Linear Quadratic, 60
LQC.m, 61
LQFullState.m, 61

M

Matlab Command Window, 26
MRS, 38

N

ND2SS, 40
nonlinear simulation, 41

O

online help, 28

P

pitch rate, 77
progress bar, 28

Q

QECI, 43

R

RK2, 41
RK4, 41
RK45, 41

S

script, 17
SISO, 64
spacecraft dynamics, 38
statespace, 38
StateSpacePlot, 58
Step, 38

T

Technical Support, 29
TimeGUI, 48, 53, 56

V

VTToVB, 43
 92

I N D E X
Z

zero order hold, 40
 93

	Introduction
	1.1 Key Features
	1.2 Aircraft Properties
	1.3 Control Design
	1.4 Graphics and Simulation

	Fundamentals
	2.1 Aircraft Properties Databases
	2.2 Organizing Your Scripts
	2.3 Functions

	Getting Help
	3.1 Matlab Help
	3.2 Demos
	3.3 File Help
	3.3.1 Introduction
	3.3.2 The List Pane
	3.3.3 Edit Button
	3.3.4 The Example Pane
	3.3.5 Run Example Button
	3.3.6 Save Example Button
	3.3.7 Help Button
	3.3.8 Quit

	3.4 Searching in File Help
	3.4.1 Find
	3.4.2 Find All Button
	3.4.3 Search Headers Button
	3.4.4 Search String Edit Box

	3.5 Graphical User Interface Help
	3.6 Technical Support

	Structures
	4.1 Data Structures
	4.2 Cell Arrays
	4.3 Classes

	Simulation
	5.1 Simulation
	5.1.1 Introduction
	5.1.2 Aspects of Simulation Models
	5.1.3 Linear
	5.1.3.1 Creating a State Space System
	5.1.3.2 Zero Order Hold
	5.1.3.3 First Order Hold

	5.1.4 Nonlinear

	5.2 Creating an Interactive Simulation
	5.3 Customizing a Simulation

	Graphics
	6.1 GUIs
	6.2 Plotting

	Designing Controllers
	7.1 Using the block diagram
	7.2 Linear Quadratic Control
	7.3 Single-Input-Single-Output
	7.4 Eigenstructure Assignment

	Implementing Controllers
	8.1 A General Interface
	8.2 Closed Loop Control
	8.2.1 Introduction
	8.2.2 Sensor Input
	8.2.3 Actuator Model
	8.2.4 Control Law

	8.3 Pilot Input
	8.4 Control Implementation

	References
	9.1 About the References
	9.2 Reference Books
	9.3 Papers

