
Solar Sail Module

for the
Spacecraft Control Toolbox

Professional Edition

This software described in this document is furnished under a license agreement. The software may be used,
copied or translated into other languages only under the terms of the license agreement.

Solar Sail Module

Printed May 31, 2012

c©Copyright 2004-2007, 2009, 2011-2012 by Princeton Satellite Systems, Inc. All rights reserved.

Any provision of Princeton Satellite System Software to the U.S. Government is with Restricted Rights
as follows: Use, duplication, or disclosure by the Government is subject to restrictions set forth in sub-
paragraphs (a) through (d) of the Commercial Computer Restricted Rights clause at FAR 52.227-19 when
applicable, or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, and in similar clause in the NASA FAR Supplement. Any provision of Princeton
Satellite Systems documentation to the U.S. Government is with Limited Rights. The contractor/manufac-
turer is Princeton Satellite Systems, Inc., 6 Market Street Suite 926, Plainsboro, New Jersey 08536.

Wavefront is a trademark of Alias Systems Corporation. MATLAB is a trademark of the MathWorks.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

Printing History:

December 15, 2005 First Printing v1.0
July 15, 2006 Second Printing v1.1
April 30, 2007 Third Printing v1.1
October 19, 2009 Fourth Printing v1.2
May 31, 2012 Fifth Printing v1.2

Princeton Satellite Systems, Inc.
6 Market Street Suite 926
Plainsboro, New Jersey 08536

Technical Support/Sales/Info: http://www.psatellite.com

ii

CONTENTS

1 Introduction 1
1.1 Solar Sails . 1
1.2 Organization . 2
1.3 Requirements . 4
1.4 Installation . 4
1.5 Getting Started . 5

2 Sail Coordinates 7
2.1 Function Overview . 7
2.2 Cone and Clock Angles . 8
2.3 Visualization . 13
2.4 Gimballed Boom Coordinates . 17

3 Building a Sail Model 19
3.1 Function overview . 19
3.2 Creating a sail mesh . 21
3.3 Defining the sail components . 25
3.4 Storing and retrieving sail models . 27
3.5 Sail configurations . 30

3.5.1 Flat Plate . 31
3.5.2 Sails with flat components . 31
3.5.3 Striped Sail . 32

4 Disturbances 35
4.1 Function Overview . 35
4.2 Solar pressure force function . 36
4.3 Environment Function . 38
4.4 Disturbance Function . 40
4.5 Profile Data Structure . 41
4.6 SailDisturbance Demo . 42

5 Attitude Dynamics 47
5.1 Function Overview . 47
5.2 Rigid Body Dynamics . 48
5.3 General Two-Body Dynamics . 48

iii

CONTENTS CONTENTS

5.4 Fixed Rate Rotating and Translating Bodies . 48
5.5 Time Varying Inertia . 50
5.6 Special Two-Gimbal Model for a Boom . 50

5.6.1 Dynamical Equations . 50
5.6.2 Two Body Functions . 56
5.6.3 Example . 58

6 Sail Attitude Actuators 59
6.1 Sliding Masses . 59
6.2 Vanes . 61
6.3 Gimballed Boom . 65

7 Orbit Dynamics and Ephemeris 69
7.1 Function Overview . 69
7.2 Orbit Dynamics . 70

7.2.1 Combined right-hand-side . 71
7.2.2 Specialized Coordinate Systems . 72

7.3 Ephemeris . 73

8 Analysis 77
8.1 Creating a CAD Model . 77
8.2 Performing a Disturbance Analysis . 80
8.3 Simulating the Attitude Dynamics . 82
8.4 Boom Control Demo . 84
8.5 Heliopause Guidance Mission Demo . 86
8.6 Integrated Guidance and Attitude Control . 90

9 Trajectory Optimization 95
9.1 Introduction . 95
9.2 Local Control . 95
9.3 Global Control . 98

9.3.1 Global Methods . 98
9.3.2 Function Overview . 100
9.3.3 Formulation of the Problem . 102
9.3.4 Zermelo’s Problem . 103
9.3.5 The Three Dimensional Equations of Motion 105
9.3.6 Low-thrust Mars Rendezvous . 107
9.3.7 Sail 2D Optimization Examples . 109
9.3.8 Heliopause Mission . 110

iv

CHAPTER 1

INTRODUCTION

This chapter describes the Solar Sail Module , shows you how to install it, and explains how it is
organized.

1.1 Solar Sails

Solar sails are a class of spacecraft characterized by large, reflective surfaces that are used as a
means of propulsion. This module contains specialized functions to model sails, including exam-
ple sail CAD models, propulsive modeling via optical and thermal forces, sail coordinate trans-
formations and guidance laws, and simulations. A major premise in this module is that solar sails
can be modeled the same way as other spacecraft are in the Spacecraft Control Toolbox, namely,
as a mesh with disturbances computed on each triangle during simulations. In this case, the dis-
turbances are also the propulsion system, but the methods of computing them are the same. In
the simplest case, a sail might be a single area element, but in a complex case, a sail can be a
combination of draped and billowed membranes in any configuration. Orbit and attitude dynamics
are also the same as any other spacecraft, but this module contains specific examples of proposed
systems, such as rotating vanes, sliding masses, and gimballed booms.

The plots in Figure 1.2 on the following page provide an orientation to the sail accelerations pro-
duced by different sail sizes and total spacecraft mass. A near-term sail is considered to be about 60
m square, producing an acceleration on the order of 0.1-0.3 mm/s2. A mid-range sail size is 100-
150 m square allowing for accelerations on the order of 0.5-1 mm/s2 for spacecraft of about 100-
300 kg. Sailcraft with accelerations over 1 mm/s2 are far-term, requiring additional advances in sail
materials and construction. There are functions in the Utilities folder which convert between some
common representations of the propulsive capability of a sail, such as characteristic acceleration,
the acceleration produced by an ideal sail of a particular size and mass at 1 AU, lightness, a dimen-
sionless parameter, and loading, the mass per area. The built-in demo of AccelToSailProps
produces the plot in Figure 1.2 on the next page.

The source material for this module includes recent textbooks and conference and journal articles

1

1.2. ORGANIZATION CHAPTER 1. INTRODUCTION

Figure 1.1. Examples of square and bladed sail designs

Figure 1.2. Sail size for acceleration

Sail square length to meet accel requirement (mm/s2)

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

Le
ng

th
 (

m
)

Spacecraft mass (kg)

0.1
0.5
 1
 2
 5

Sail square length to meet mass requirement (kg)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

40

60

80

100

120

140

160

180

200
Le

ng
th

 (
m

)

Sail accel (mm/s2)

100
200
300

studying various aspects of sail design and potential missions enabled by this technology. This
body of literature is constantly growing and if there is a particular example or mission you would
like to see in the Solar Sail Module, please let us know!

1.2 Organization

The Solar Sail Module is organized into a number of folders as shown in Figure 1.3 on the facing
page. Each of these folders contains function files. Most of these folders also have corresponding
folders in the Demos folder which contain scripts that demonstrate how to use the functions to
perform different types of analyses.

If you type help Sail at the command line, you will get a list of folders in your version of the
Solar Sail Module.

2

CHAPTER 1. INTRODUCTION 1.2. ORGANIZATION

Figure 1.3. Solar Sail Module on Mac OS X

>> help Sail
PSS Toolbox Folder Sail
Version 7.1 13-Jul-2009

Directories:
Actuator
Analysis
AttitudeDynamics
Control
Coordinates
DemoFuns
Demos
Demos/Actuator
Demos/Control
Demos/Disturbances
Demos/Dynamics
Demos/EphemJPL
Demos/Guidance
Demos/Integrated
Demos/Missions
Demos/Optimization
Demos/SailDesigns
Demos/SailModeling
Disturbances
Dynamics

3

1.3. REQUIREMENTS CHAPTER 1. INTRODUCTION

GAOT
Graphics
Guidance
Help
Missions
OptTestFuns
Optimization
OrbitDynamics
SailData
SailEphem
SailModeling
Utilities

1.3 Requirements

The Professional Edition of the Spacecraft Control Toolbox is required to use this module. The
toolbox requires MATLAB 7.x for full functionality. Most functions will also run in earlier versions
of MATLAB.

1.4 Installation

The Solar Sail Module is designed to be used with the Spacecraft Control Toolbox (SCT). You
should already have the SCT installed on your computer, or this Solar Sail Module should have
been installed with your complete SCT package. If you are adding this module to your PSS tool-
boxes or updating it, then please follow these instructions.

If you have a CD, copy the Solar Sail Module folder for your operating system from the CD into
your PSS Toolboxes software folder. The Solar Sail Module should be at the same level as your
other modules such as the Common and SC module folders, as shown in Figure 1.3 on the previous
page. You can copy the PDF documentation anywhere you wish. If you downloaded your product
from the Princeton Satellite Systems website, put the folder extracted from the archive in your PSS
Toolboxes software folder. There is no “installer” application to do the copying for you. All you
need to do now is to set the MATLAB path to include the folders in the Solar Sail Module.

We recommend using the supplied function PSSSetPaths.m instead of MATLAB’s path utility.
From the MATLAB prompt, cd to your PSS Toolboxes folder and then run PSSSetPaths. For
example:

>> cd /Users/me/PSSToolboxes
>> PSSSetPaths

This will set all of the paths for the duration of the session. You can set the path to include
PSSToolboxes permanently by opening MATLAB’s path dialog and saving the current path or by

4

CHAPTER 1. INTRODUCTION 1.5. GETTING STARTED

using the function path2rc. You can also add Modules to your path one at a time by using the
copy of PSSSetPaths inside the Module folders.

1.5 Getting Started

The first two functions that you should try are DemoPSS and FileHelp. These are generic to
all PSS toolboxes and modules and they provide the best way to get an overview of your new
software’s capabilities.

Each toolbox or module has a Demos folder and a function DemoPSS. Do not move or remove
this function from any of your modules! DemoPSS.m looks for other DemoPSS functions to de-
termine where the demos are in the folders so it can display them in the DemoPSS GUI, illustrated
by Figure 1.4.

Figure 1.4. The DemoPSS GUI

The FileHelp function provides a graphical interface to the MATLAB function headers, as shown
in Figure 1.5 on the next page. You can peruse the functions by folder to get a quick sense of your
new product’s capabilities and search the function names and headers for keywords. FileHelp
is discussed further in the main SCT User’s Guide.

Alternatively, you may now browse the module’s functions and demos using MATLAB’s help
browser.

5

1.5. GETTING STARTED CHAPTER 1. INTRODUCTION

Figure 1.5. The File Help GUI

6

CHAPTER 2

SAIL COORDINATES

This chapter shows you how to use Solar Sail Module functions for commonly needed coordinate
transformations.

2.1 Function Overview

The Coordinates folder contains functions for describing sail attitudes as well as orbit coordinates
useful for trajectory optimization routines. Use the help function with the folder name to get the
list of available functions with a brief description.

>> help Coordinates
Sail/Coordinates

A
AttitudeProfileToTorque - Compute an equivalent torque sequence

from an attitude profile.

B
BConeClock - Compute a rotation matrix for cone and

clock from the reference frame

C
CartToI - Computes inclination from cartesian

elements
ClockConversion - Apply a clock angle convention between

McInnes, PSS, and JPL.
ConeClockConvention - Apply a selected cone/clock sign

convention for angle ranges.
ConeClockToQConstrained - Compute a quaternion from cone and clock

angles.
ConeClockToU - Compute a unit vector from cone and

clock angles.

E

7

2.2. CONE AND CLOCK ANGLES CHAPTER 2. SAIL COORDINATES

ElToMEq - Transforms modified Keplerian elements
to equinoctial elements.

M
MEQToECI - Transform to ECI frame from tangential

coordinates.
MEQToI - Compute inclination from modified

equinoctial coordinates.
MEqToEl - Transforms modified equinoctial elements

to Keplerian elements.
MEqToRV - Transforms modified equinoctial elements

to r and v.

P
PlanetRot - Transform from ECI to planet-fixed axes.

Q
QSail - Quaternion from inertial to the local

rotating sun-sail frame.
QToConeClock - Computes cone and clock angles from an

inertial to body quaternion.
QXToAlphaDelta - Cone and clock angles (alpha,delta) to

inertial quaternion.

R
RVToMEq - Transforms elements r and v to modified

equinoctial.

S
SteeringAnglesToQ - Convert sail steering angles to a

quaternion.

U
UToConeClock - Computes cone and clock angles from a

unit vector.

2.2 Cone and Clock Angles

Solar sails generate thrust due to optical reflection. Therefore, solar sails must be pointed within a
fairly narrow angular range of the sun vector to produce thrust. The thrust direction is opposite the
surface normal facing the incoming flux. The angle between the thrust vector and the sun vector
is termed the cone angle; due to the cosine rule of optical forces, this angle determine the force
produced by the sail. The cone angle must be 90 degrees or less. In 3D, the cone angle literally
describes a cone about the sun vector where the sail might be pointed. The angle locating the thrust
around this cone is called the clock angle, and it ranges from 0 to 360 degrees. The clock angle has
to be defined from some reference point on the cone. The definition of the reference direction varies
widely in the sail literature but it may be in the osculating orbit or inertially defined. Figure 2.1 on
the facing page shows the two angles separately and then together with a notional square sail.

8

CHAPTER 2. SAIL COORDINATES 2.2. CONE AND CLOCK ANGLES

Figure 2.1. Sail Cone and Clock Angle Diagram

n
flux

f

Cone Clock

f

front

back
ref

f

s

αβ

ref

For a perfectly specular sail, the thrust vector is always aligned with the sail normal out the back
of the sail. For a realistic sail, there might be a substantial angle between these vectors due to
nonideal optical properties and a nonflat sail shape. Therefore, for a real sail, we need two sets of
cone and clock angles to describe the situation: the steering set which describe the sail attitude, and
the actual set which describe the resulting force direction. Note that the cone angle of the attitude
may be more properly termed the incidence angle. Nonideal optical properties result in a diffuse
component which cases the thrust to have a smaller cone angle than the sail incidence angle. The
angle between the force vector and the surface normal is called the centerline angle.

The most relevant functions for cone and clock angles in the Solar Sail Module are:

• ClockConversion
• ConeClockConvention
• ConeClockToU
• QSail
• SteeringAnglesToQ
• UToConeClock

The cone angle can only be computed one way, through a simple dot product. The symbol α is
widely used for this angle. PSS has identified several major conventions for the clock angle to
date, namely:

McInnes McInnes[7] measures clock (δ) from the osculating orbit normal. The sail normal n is
defined to be pointing out the back of the sail, i.e. away from the sun.

p̂ = r̂ × v̂
nb = cosα r̂ + sinα cos δ p̂+ sinα sin δ p̂× r̂

PSS In a planet-centric orbit, it makes sense to continue to define the angles relative to the sun
vector, which is no longer coincident with the position vector. The orbit normal will also no
longer be perpendicular to the sun line. Therefore we define a sun-pointing frame where the

9

2.2. CONE AND CLOCK ANGLES CHAPTER 2. SAIL COORDINATES

clock angle (β) is measured from the cross product of the orbit normal and the vector to the
sun. If the orbit is heliocentric and the vector s is taken to be from the sun towards the sail,
then this coincides with McInnes’ description.

x̂ = ŝ

ŷ = (r̂ × v̂)× x̂
ẑ = x̂× ŷ
n = cosα ŝ+ sinα cos β ŷ + sinα sin β ẑ

Alternatively, the velocity vector alone may be used to define the clock reference direction.
This ensures that the y vector is always in the same hemisphere as the velocity vector. This
frame is convenient for analyzing the force produced by the sail and its relationship to the
trajectory.

x̂ = ŝ

ẑ = x̂× v̂
ŷ = ẑ × x̂

In both cases above, the clock angle is measured from the reference y axis.

JPL JPL[2] uses a convention measuring clock from ecliptic north. This is intended only for
heliocentric orbits.

Each of these conventions will result in different clock angle profiles for certain common guidance
situations such as orbit raising, where the sail thrust vector has a component along the velocity
vector. PSS prefers our own description since it works equally well in a heliocentric or planet-
centric orbit. Hence, PSS’ coordinate transformation functions use this convention, although a
function ClockConversion also exists to convert between the three.

In Figure 2.2 on the next page, the cone angle is α and the clock angle is β, and the angles are used
to define the sail forward normal vector n̂f . In a heliocentric frame z will always be coincident
with the orbit normal.

Clock angles can be converted between formats using ClockConversion. The formats are
numbered in the order they are given above: 1 for McInnes, 2 for PSS, 3 for JPL. Orbital and sun
vectors are needed for the conversion, and they are provided in the data structure d. The vectors
can be in either the ECI or the ecliptic frame as specified with a flag. The syntax is

clockNew = ClockConversion(cone, clock, fromConv, toConv, d)

and a built-in demo comparing the conventions is shown in Figure 2.3 on the facing page. The
orbit is heliocentric with an inclination of 1 radian.

Quaternions are used for attitude representation in most PSS simulation functions. PSS defines a
rotating sail frame using QSail, which returns the inertial-to-reference quaternion. The x axis
can be either along or opposite the vector to the sun, with a flag used to set the sign convention.

10

CHAPTER 2. SAIL COORDINATES 2.2. CONE AND CLOCK ANGLES

Figure 2.2. Sail Cone and Clock Angle Diagram

Sun

Orbit Normal

α

β

Sun normal plane

Orbit normal plane

Projection of
orbit normal in
Sun normal plane

x,

y

z

Figure 2.3. ClockConversion built-in demo

Clock Angle Comparison between McInnes, Dachwald and JPL

0 50 100 150 200 250 300 350 400
−100

−50

0

50

100

150

200

C
lo

ck
 (

de
g)

True Anomaly (deg)

McInnes
Dachwald
JPL

The y and z axes are defined using either the orbit normal or the velocity vector as a reference
as described above. This function is comparable to QLVLH from the Spacecraft Control Toolbox,
which defines a local vertical/local horizontal frame. QSail has a built-in demo which computes
the quaternion for a 1 AU heliocentric orbit inclined to 0.5 radians, producing the plot shown in
Figure 2.4 on the next page. As an example,

>> s = SunV1(2451545)

s =

0.1801
-0.9025
-0.3913

>> r = [7000;0;0];
>> v = [0;7.5461;0];

11

2.2. CONE AND CLOCK ANGLES CHAPTER 2. SAIL COORDINATES

Figure 2.4. QSail and QSunSail built-in demos. On the left, the x-axis points towards the sun
and the z-axis towards the orbit normal. On the right, the x-axis points away from the sun, and the
y-axis is towards the velocity vector.

−2
−1.5

−1
−0.5

0
0.5

1

x 10
8

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
8

−5

0

5

x 10
7

y

Sail−Centered Sun Pointing Frame

x

z

−2
−1.5

−1
−0.5

0
0.5

1

x 10
8

−1

−0.5

0

0.5

1

x 10
8

−5

0

5

x 10
7

y

Sail−Centered Sun Reference Frame

x

z

>> q = QSail(s, r, v)

q =

0.7576
-0.1266
-0.1544
0.6214

A complete attitude description will also require a quaternion which rotates from the sail reference
frame to the given cone and clock angles and a quaternion which rotates from these axes to the
body frame. We define the following frames for clarity:

Body frame Frame attached to the sail, for example with x as the front normal

Sail-Sun frame Also called simply the sail frame or the reference frame, this is the frame defined
relative to the orbit and the sun vector from which cone and clock angles are measured.

Cone-Clock frame This is the frame rotated from the sail frame by the cone and clock angles

Cone and clock angles can be computed from unit vectors using UToConeClock, and ConeClockToU
transforms in the opposite direction. SteeringAnglesToQ computes an inertial-to-body quater-
nion assuming that the sail front is along +x in the body frame and that the body y axis is aligned
with the clock angle. Note that without this second assumption or something similar, there are
infinite ways the sail could be rotated to achieve the desired pointing, and we would need yet an-
other quaternion to fully define the sail attitude with respect to an inertial frame. A specific control
scheme will require a specific pointing function.

For example, the following lines show an example using the sun-pointing (positive) sign conven-
tion.

12

CHAPTER 2. SAIL COORDINATES 2.3. VISUALIZATION

[r,v] = El2RV([Constant(’au’) 0.5 0 0 0 0], [], Constant(’mu sun
’));

s = -Unit(r);
cone = 0.5;
clock = pi/2;

[u,qItoCC] = ConeClockToU(cone, clock, r, v, s)
[cone, clock] = UToConeClock(u, r, v, s)
[cone, clock] = QToConeClock(qItoCC, r, v, s)

This confirms that the cone and clock angles are in fact recovered, and the same is true for any
additional rotation of the sail body about its x axis,

qSB = Eul2Q([1.2;0;0]);
qIB = QMult(qItoCC, qSB);
[cone, clock] = QToConeClock(qIB, r, v, s)

for which the output remains
cone =

0.5
clock =

1.5708

ConeClockToU also has a built-in demo which draws the sail vector u for zero cone and clock
angle for an eccentric heliocentric orbit.

Figure 2.5. ConeClockToU built-in demo

−15

−10

−5

0

5
x 10

7

−20

−15

−10

−5

0

5

x 10
7

−5

0

5

x 10
7

y

ConeClockToU Built−in Demo

x

z

2.3 Visualization

The CAD models present in the toolbox generally use the following frame for a square sail: +x
is the forward normal of the sail (towards the sun), +y is along a diagonal of the square, and +z
completes the set, as in Figure 2.6 on the following page.

13

2.3. VISUALIZATION CHAPTER 2. SAIL COORDINATES

Figure 2.6. Square sail body frame

z

y

x

However, a CAD model may have another orientation, depending on how it was created. To
view a stored CAD model, load it into a data structure and pass it into DrawSCPlanPlugIn.
Example 2.1 shows the simple code required to do this.

Example 2.1 Visualize a CAD model with body axes

g = load(’QuadSail 100.mat’);
DrawSCPlanPlugIn(’initialize’,
g);
AddAxes(g.radius,[],[],gcf);

The Solar Sail Module has a number of functions that are helpful in visualizing sail attitudes,
as shown in Figure 2.7 on the facing page, Figure 2.8 on the next page. Some include a no-
tional square sail, some include an actual CAD model, and other just show angles. The demo
SailForcePlots uses several of these functions with a consistent set of attitude data.

14

CHAPTER 2. SAIL COORDINATES 2.3. VISUALIZATION

Figure 2.7. DrawSailAttitude: Draw the attitude of a sail CAD model relative to the sun
vector

Figure 2.8. PlotSailForce2D and PlotSailClock2D: 2D plots of the sail force and
normal vectors

15

2.3. VISUALIZATION CHAPTER 2. SAIL COORDINATES

Figure 2.9. VisualizeSailAttitude: 3D plots of a notional sail and steering angles. The
front or the back of the sail can be distinguished by shade when rotating.

Figure 2.10. DrawSailAngles: Simplified 3D view without the sail.

16

CHAPTER 2. SAIL COORDINATES 2.4. GIMBALLED BOOM COORDINATES

2.4 Gimballed Boom Coordinates

A common configuration in sails is the presence of a gimballed boom. The boom will have two
gimbals which correspond to some sequence of rotations. PSS uses a convention of 1-2 angles
for this configuration, as shown in Figure 2.11. See for example GimbalRates, which explicitly
assumes this configuration. The function HingeRotationMatrix can compute transformation
matrices for any combination of single axis rotations. In the case of the 1-2 boom gimbals, the axis
vectors are

>> axis = [1 0;0 1;0 0]
axis =

1 0
0 1
0 0

The rotations around these axes will transform from the unrotated to the rotated frame. For exam-
ple,

>> angle = [pi/2 0.1];
>> bT = HingeRotationMatrix(angle, axis)
bT =

0.995 0.099833 -2.2167e-17
0 2.2204e-16 1

0.099833 -0.995 2.2094e-16

Figure 2.11. Gimballed boom frame

17

2.4. GIMBALLED BOOM COORDINATES CHAPTER 2. SAIL COORDINATES

18

CHAPTER 3

BUILDING A SAIL MODEL

This chapter discusses the functions available to help create sail models and describes the examples
included in the Solar Sail Module.

3.1 Function overview

The SailModeling folder contains functions for modeling sail materials (CP1), sail shape, and sail
deployment.

>> help SailModeling
Sail/SailModeling

C
CP1Props - Front and back optical and thermal

properties of CP1 (Lambertian)

H
HCircularBillow - Form:
HRakoczy - Height function for a square sail

with billow.

I
IDotS4 - Inertia derivative of S4 sail.

S
S4DeployTorque - Disturbances function for modeling

deployment of scalable square sail.
SailMesh - Create a mesh with the height

determined by a specified function.
StripedQuadrant - Create a striped sail quadrant,

with billow, in the x, y plane.

Sail/Demos/SailModeling

S

19

3.1. FUNCTION OVERVIEW CHAPTER 3. BUILDING A SAIL MODEL

S4Deployment - S4 (ATK’s scalable sail) deployment
demo.

SailMassAndArea - Sail dimensions as a function of
payload mass

The completed sail designs are in SailDesigns.
>> help SailDesigns

Demos/SailDesigns

C
CircularSail - Design a circular sail with billow

using SailMesh.
ConeSail - Cone sail model
Cosmos1 - CAD model of the Cosmos-1 solar

sail.

E
ECHOModel - A specular spherical sail, i.e.

ECHO-2

F
FlatPlate - A flat, square, specular sail in

the Y/Z plane.

P
PlateWithBoom - Design a gimbaled boom specular

sail model with two bodies.
PlateWithBoomAndVanes - Design a specular sail model with a

control boom and vanes.
PlateWithMasses - Design a specular (plate) sail

model with two transverse control masses.
PlateWithVanes - Design a specular (plate) sail

model with two control vanes.

Q
QuadBillowedSail - A billowed quadrant sail

demonstrating SailMesh. Uses CP1
properties.

S
S4Deploy - 40 m Scalable Sail, for deployment

analysis.
SailWithBoom - Design a gimbaled boom sail model

with two bodies.
SquareGEOSail - A flat, specular sail for GEO

simulations.
StripedSail - Design a square sail with four

striped quadrants.

20

CHAPTER 3. BUILDING A SAIL MODEL 3.2. CREATING A SAIL MESH

3.2 Creating a sail mesh

As mentioned in other chapters, a main premise of this toolbox is that a sail of complex shape
can be described as a mesh, similarly to any other spacecraft, and disturbances computed on each
triangle of the mesh. This is our approach to modeling sails. The Solar Sail Module provides
several function to assist users in creating meshes for different sail designs. Common problems are
describing a billow, similar to the sail of a boat when in the wind, and stripes of draped material.
Main issues when defining a sail this way include accurately computing the resulting inertia, for
attitude control purposes, and the optical, if they may be distributed.

The CAD functions provide a sail component class that is recognized by the disturbances function
so that the special combined thermal/optical model for membranes is used. This class requires that
the sail shape be defined using vertices and faces. This is the way MATLAB defines patch objects
in figures, see the help for patch for more information. Each vertex is a location in 3D space,
and each face is defined by a set of vertices, which when connected in order make a polygon. For
instance, to define a triangle, we will have three vertices and one face. The vertices must be in
consecutive rows. For a triangle in the X/Y plane simply type:

v = [[0,0,0]; [1,0,0]; [0,1,0]];
f = [1 2 3];
patch(’vertices’,v,’faces’,f)
axis([-.2 1.2 -.2 1.2]); grid on

Figure 3.1. Simple triangle patch

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

and you will see the triangle in Figure 3.1. This is really the basis of all the sail designs in Solar
Sail Module. A square or bladed sail can be made from triangles in this way. Related functions
available in the Spacecraft Control Toolbox are Panel, which defines a flat circumferential shape
(like a square or hexagon), PanelWithCenterHole, and PanelWithCutout. These can

21

3.2. CREATING A SAIL MESH CHAPTER 3. BUILDING A SAIL MODEL

create a flat triangular mesh but without further subdivision, so they are good for modeling flat
sails or sail components of different shapes. For example, to make a flat panel with a cutout, we
can copy the functions built-in demo but pass in a thickness of zero.

xW = 10;
yW = 20;
t = 0;
c.x = -1;
c.y = 1;
c.r = 3;
c.n = 6;
[v, f, area] = PanelWithCutout(xW, yW, t, c)

v =
1.1213 3.1213 0
-1.7765 3.8978 0
-3.8978 1.7765 0
-3.1213 -1.1213 0

-0.22354 -1.8978 0
1.8978 0.22354 0

5 10 0
-5 10 0
-5 2.8937 0
-5 -10 0
5 -10 0
5 -2.8937 0

f =
1 7 8
2 8 9
3 9 10
4 10 11
5 11 12
6 12 7
1 8 2
2 9 3
3 10 4
4 11 5
5 12 6
6 7 1

area =
176.62

A more complex shape with displacement out of the plane requires a more refined mesh. This is
where SailMesh comes in.

>> help SailMesh
--

Create a mesh with the height determined by a specified
function.

This can be used to model a sail shape such as billow. The x
and y vectors

should decribe the circumference of the sail. The origin is

22

CHAPTER 3. BUILDING A SAIL MODEL 3.2. CREATING A SAIL MESH

Figure 3.2. Simple panel meshes: Panel, PanelWithCenterHole, and
PanelWithCutout

−5

0

5

−10

−8

−6

−4

−2

0

2

4

6

8

10
−0.5

0
0.5

z

x

y

added so the
mesh resembles a refined pinwheel.

The height function is of the form: HMesh(x, y, d)
where x and y can be arrays. d is a data structure containing

any
user-defined fields. A function ’DefaultH’ is provided for

testing.

The built-in demo creates a circular sail and a quadrant.
--

Form:
[v, f] = SailMesh(x, y, hFunc, d, nRefine)

--

Inputs

x (1,m) x locations of mesh
y (1,m) y locations of mesh
hFunc (:) Function for h positions (string or handle)
d (:) Data structure to pass to z function
nRefine (1,1) Number of times to refine mesh. Default is

once.

Outputs

v (:,3) Vertices
f (:,3) Faces

23

3.2. CREATING A SAIL MESH CHAPTER 3. BUILDING A SAIL MODEL

--

As you can see, SailMesh returns the vertices and faces for a sail. This function allows you
to specify a function describing a vertical displacement for a nonflat sail. You can also use a
function to define x and y as other than a flat line. The two main examples of this function are
CircularSail and QuadBillowedSail.

For the circular sail example, x and y are computed for a circle of the desired radius using 16 points
along the circumference. The function HCircularBillow provides an out-of-plane displace-
ment based on a slope b at the outer edge and the sail radius r. We specify that the mesh should be
refined, that is each triangle refined into four more, three times. The code to compute the mesh is
only a few lines. To get a figure of the resulting mesh, call SailMesh again without any outputs.
The sail mesh will be colored based on the magnitude of the out-of-plane displacement. Notice
that the units of the model is meters.

% Get sail shape
theta = [0:15]*pi/8;
rSail = 160; % m
x = rSail*cos(theta);
y = rSail*sin(theta);

dBillow = struct(’b’,0.2,’r’,rSail);
[v,f] = SailMesh(x, y, ’HCircularBillow’, dBillow, 3);

−200 −150 −100 −50 0 50 100 150 200

−150

−100

−50

0

50

100

150

x

y

−16

−14

−12

−10

−8

−6

−4

−2

0

The second example is a square sail supported by booms such that each of four quadrants has
a smooth billow, with zero displacement along the booms. In this case the x and y inputs to
SailMesh define the outer corners of the square. We rotate the square by 45 degrees so that each
boom is along an axis in the cody frame. The function HQuadrantBillow defines the billow for
a quadrant based on a maximum billow depth d at the outer edge of the sail, specified as a fraction
of the boom length, and the length of the boom L. Again, to get a figure of the resulting mesh, call
the function again with no outputs.

24

CHAPTER 3. BUILDING A SAIL MODEL 3.3. DEFINING THE SAIL COMPONENTS

% Sail
%-----
sailWidth = 100;
x = sailWidth/2*[1 -1 -1 1];
y = sailWidth/2*[1 1 -1 -1];
B = sin(pi/4)*[1 1; -1 1];
p = B*[x;y];
lQuadrant = sailWidth/sqrt(2);
billow = struct(’L’,lQuadrant,’b’,0.1);
[v,f] = SailMesh(p(1,:), p(2,:), ’HQuadrantBillow’, billow, 4);

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

x

y

−7

−6

−5

−4

−3

−2

−1

0

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

−10
−5

0
5

y

x

z

3.3 Defining the sail components

Once you have the vertices and faces for the sail, you are ready to make a component. The CAD
component requires optical and mass properties as well as the geometric shape data, and you have
to rotate it to the right place in the body frame. Components are usually defined in a default frame,
such as in the X/Y plane. In addition, for a sail class component, you have to provide both front
and back optical properties, as needed for the membrane disturbance function. If you want to
model an ideal specular surface, you can do so provided the emissivity is nonzero, even if it is the
same for both the front and back.

The CreateComponent function is described in detail in the CAD chapter of the Spacecraft
Control Toolbox user’s guide, and we will review it here briefly. You pass in a variety of parame-
ters, and the function fills in all the default fields and creates a standard format for the component.
You select a type of component using the ’make’ action, and in this case we are making a sail
component. You give the component a name and specify which body it attached to. Recall that
bodies may be independently rotated once the model is complete. You provide the mass properties
in a data structure, as well as the optical properties sigma* and in the case of a sail component,
emissivity as well, to complete the membrane description. You should specify this component
as inside equal to 0; any small components that will have a negligible effect on the disturbances,
or components that are actually inside a bus and not external to the spacecraft, would have a 1

25

3.3. DEFINING THE SAIL COMPONENTS CHAPTER 3. BUILDING A SAIL MODEL

here. You can specify a face color for the component, which affects how it displays within Matlab
figures, but it not used for actual disturbances computation. Lastly, you specify the location of the
component using three parameters: rA, rB, and b, which specify a displacement before and after a
rotation by matrix b. For a component without additional rotation you can just specify rA. So here
is a brief example from SailWithBoom:

v = [0 0 0 0;0.5 -0.5 -0.5 0.5;0.5 0.5 -0.5 -0.5]’*sailWidth;
m = CreateComponent(’make’, ’sail’,’name’,’Sail’,’body’,1,...

’mass’, massSail, ’faceColor’, ’mirror’,’rA’
,[-coreWidth/2;0;0],...

’sigmaS’, [0.9 0.85], ’sigmaD’, [0.02 0.05],
’sigmaA’, [0.08 0.1], ’emissivity’, [0.03,
0.3],...

’vertex’,v ,’face’, [1 2 3; 1 3 4], ’inside’,
0);

This sail is specified as two triangles using the vertex and face fields of MATLAB graphics
objects. Recall that all PSS CAD models are stored as sets of triangular patches. The order of
the vertices in the face field will determine the direction of the outward normal of the patch area
(using the right-hand-rule). These faces have been carefully defined so that the normals face in the
same direction. The optical coefficients for specular reflection, diffuse reflection, and absorption
are stored in the sigma fields, with S for specular, D for diffuse, and A for absorptive; these
coefficients should sum to 1 for each side of the sail. CP1Props gives these properties and the
emissivity, approximately, for the material CP1.

Note that the sail mass structure is passed in using the variable massSail, which has the fields
inertia, mass, and cM, or center of mass. Since this is a very simple square component, the
Inertias function from the Spacecraft Control Toolbox can be used to compute the inertia of
a plate with the desired sail mass and dimensions. Inertias computes the inertia with the axis
of symmetry about z, so this must be rotated to the component frame; in this case the sail is in the
Y/Z plane. An offset in the center of mass would be entered via the mass structure. The inertia is
then computed using the code

inertiaSail = Inertias(sailMass, [sailWidth sailWidth], ’plate’
, 1);

bXToZ = [0 0 -1;0 1 0;1 0 0];
massSail = struct(’inertia’, bXToZ*inertiaSail*bXToZ’, ’mass’

, sailMass, ’cM’, [0;0;0]);

For a more complex mesh, the function VFToMassStructure can compute the mass properties
assuming a unitary areal mass. The function PolygonProps from the Spacecraft Control Tool-
box computes the area, outward normal, and geometric center of each triangle. Each triangle area
is summed to the inertia using its distance from the mesh centroid. The CircularSail model
provides an example of doing this. The inertia and mass from VFToMassStructure are based
only on area, so they need to be multiplied by the sail material areal mass.

% Mass properties
arealMass = 0.005; % kg/m2
mass = VFToMassStructure(v, f);

26

CHAPTER 3. BUILDING A SAIL MODEL3.4. STORING AND RETRIEVING SAIL MODELS

mass.mass = mass.mass*arealMass;
mass.inertia = mass.inertia*arealMass;

Note that accurate inertia is only necessary when you want to simulation attitude dynamics or
control. If you only want to use a model for trajectory analysis, you can skip the inertia and just
enter the correct mass.

3.4 Storing and retrieving sail models

After you create all the components, the resulting CAD model is stored as a data structure. You can
view the fields by displaying the final structure g returned by BuildCADModel(’get cad
model’). The following listings are from SailWithBoom; this model has two bodies, one
for the sail and one for the boom, which rotates to provide two-axis attitude control. This CAD
model is stored in Solar Sail Module as a mat file so you can retrieve the data without rerunning
the script. The code to create a mat-file with the model is

%
--

% Export
%

--

if(createFiles)
g = BuildCADModel(’get cad model’);
c = cd;
cd(FindDirectory(’SailData’));
SaveStructure(g, ’SailWithBoom’);
cd(c);

end

and the code to load the stored model and view the fields of the structure is

>> g = load(’SailWithBoom.mat’)

g =
name: ’Solar Sail’

units: ’mks’
body: [1x2 struct]

component: [1x5 struct]
radius: 28.285

mass: [1x1 struct]

We want to check the normals of the sail component to make sure that they are pointing forwards
in the coordinate frame. These are computed and stored when the component is added to the CAD
model, as well as the area and location of the centroid of each triangle. We can view the names of
the model’s components to find the one we want,

27

3.4. STORING AND RETRIEVING SAIL MODELSCHAPTER 3. BUILDING A SAIL MODEL

>> {g.component.name}
ans =

’CoreBox’ ’Gimbal’ ’Sail’ ’BoomBox’ ’Mast’

and we see that the sail is the third component, so we can examine all of its properties by displaying
that substructure.

>> g.component(3)
ans =

faceColor: [0.7 0.7 0.7]
edgeColor: [1 1 1]

diffuseStrength: 0.3
specularStrength: 1
specularExponent: 20

specularColorReflectance: 0.5
b: [3x3 double]

rA: [3x1 double]
v: [4x3 double]
f: [2x3 double]
a: [2x1 double]
n: [2x3 double]
r: [2x3 double]

radius: [2x1 double]
deviceInfo: []

class: ’sail’
name: ’Sail’

optical: [1x1 struct]
infrared: [1x1 struct]
thermal: [1x1 struct]

power: [1x1 struct]
aero: [1x1 struct]

magnetic: [1x1 struct]
mass: [1x1 struct]

inside: 0
rF: [1x1 struct]

body: 1
manufacturer: ’none’

model: ’generic’

In this listing we can see that the sail component is of the sail class. The normals are stored in n
and the areas in a. r gives the vector to the centroid of each patch from the origin of the vehicle
coordinate system.

>> g.component(3).n
ans =

1 0 0
1 0 0

>> g.component(3).r
ans =

28

CHAPTER 3. BUILDING A SAIL MODEL3.4. STORING AND RETRIEVING SAIL MODELS

-0.25 -6.6667 6.6667
-0.25 6.6667 -6.6667

>> g.component(3).a
ans =

800
800

For a complex sail, you might have thousands of faces with their own normals, and this simple
check of the data in the structure may not suffice. The function ComputeSailNormal will
compute the area-weighted normal of all the sail components in a model. The CircularSail is
a good example of a mesh sail, as described above.

g = load(’CircularSail’);
n = ComputeSailNormal(g)

n =
0
0
1

Over time, you may accumulate old stored models. To quickly get a synopsis of the properties of a
sail model, use DisplaySailProperties. This will generate a 3D figure of the CAD model
plus print out data like the sail area and spacecraft mass to the command line. You can use this
function as a template to print out other data stored in the CAD models, or alternative parameters
for the sail, whichever is most useful to your analysis.

g = load(’CircularSail’);
DisplaySailProperties(g)

Circular Sail
Sail normal: [0 0 1]
Sail area: 78373.567 m2
Sail mass: 395.63522 kg
Sail inertia (kg/m2):

2478585.1 1.4479156e-10 1.1941665e-11
1.4479156e-10 2478585.1 1.961098e-12
1.1941665e-11 1.961098e-12 4941454

Sail characteristic accel: 1.7934 mm/s2
Number of bodies in model: 1
Number of components in model: 1
Sail class components: 1

Sail optical properties
Component Sail:

Specular Front: 0.95 Back: 0.7
Diffuse Front: 0.03 Back: 0.1
Absorptivity Front: 0.02 Back: 0.2

29

3.5. SAIL CONFIGURATIONS CHAPTER 3. BUILDING A SAIL MODEL

Emissivity Front: 0.1 Back: 0.3

The code that DisplaySailProperties uses to display the CAD model in a 3D figure
is very simple and something you may want to embed in your scripts. The main function is
DrawSCPlanPlugIn. A set of body axes can be added to the figure with AddAxes.

tag = DrawSCPlanPlugIn(’initialize’, g);
figH = findobj(’tag’, tag);
AddAxes(g.radius,[],[],figH);

You may always want to add a light source to the figure. This will cause the sail to be shiny on the
front and darker on the back, when you rotate the figure around. This is a simple use of the light
function. The light defaults to the infinite style, which is appropriate for the sun, in which case
the position parameter is the direction from which the light shines. So, for our model, the position
should be the same unit vector as the sail front normal.

light(’position’,[0;0;1])

When you view the sail from straight on with the light object in the figure, the sail will be white.
This gets hard to see on a white background, so you can change the figure and axes background to
block for a good visualization.

set(gcf,’color’,[0 0 0])
set(gca,’color’,[0 0 0])

3.5 Sail configurations

The Solar Sail Module provides a number of examples to help you get started modeling your own
sail.

30

CHAPTER 3. BUILDING A SAIL MODEL 3.5. SAIL CONFIGURATIONS

3.5.1 Flat Plate

The simplest way to model a sail is as a perfectly specular plate. The membrane model requires a
nonzero emissivity but if the emissivity of the front and back are equal, and the optical coefficients
are specular, the model reduces to ideal specular reflection. Otherwise the flat plate sail component
is created the same way as the sail from SailWithBoom. Just note the values of the sigma*
and emissivity parameters.

% Sail
%-----
v = [0 0 0 0;0.5 -0.5 -0.5 0.5;0.5 0.5 -0.5 -0.5]’*sailWidth;
m = CreateComponent(’make’, ’sail’,’name’,’Sail’,’body’,1,...

’mass’, massSail, ’faceColor’, ’mirror’,’rA’
,[0;0;0],...

’sigmaS’, [1 1], ’sigmaD’, [0.0 0.0], ’sigmaA’,
[0.0 0.0],...

’sigmaRS’, [0.0 0.0], ’sigmaRD’, [0.0 0.0], ’
sigmaRA’, [1 1],...

’emissivity’, [0.03, 0.03],...
’vertex’,v ,’face’, [1 2 3; 1 3 4], ’inside’, 0)

;

This model is used in several demos, including SPICombinedDemo, SailCombinedDemo,
and HeliopauseSimulation. The mat-file storing this model is FlatSail.mat..

3.5.2 Sails with flat components

A variety of sail configurations can modeled as a set of flat components. Cosmos-1, for instance,
consisted of a set of independently rotating, rigid sails. Other sail concepts involve rotating vanes
at the tips of an otherwise static sail. Both Cosmos1 and PlateWithVanes create multiple
bodies for these rotating sail parts.

31

3.5. SAIL CONFIGURATIONS CHAPTER 3. BUILDING A SAIL MODEL

3.5.3 Striped Sail

The striped sail model is a special case of a sail mesh. A square sail is divided into stripes from
the inner corners of each quadrant to the outside; each of these stripes is formed by draping sail
membrane over taut cords. The function StripedQuadrant will produce a quadrant mesh
based on the quadrant length, number of stripes, subdivisions, and a fraction indicating how deep
each stripe is draped compared to its width. The script StripedSail creates a sail model from
these quadrants. This sail has a single body.

>> help StripedQuadrant

Create a striped sail quadrant, with billow, in the x, y plane
.

This function has a built-in demo which draws a quadrant
colored by

vertical displacement. The billow is assumed quadratic, with a
billow

fraction used to define the billow as a percent of the stripe
width.

If a quadrant edge is 10 m, and there are 4 stripes, each will
be about

1.76 m wide. The billow fraction operates on this dimension.
If nSub

32

CHAPTER 3. BUILDING A SAIL MODEL 3.5. SAIL CONFIGURATIONS

is not entered a value between 2 and 6 will be selected based
on the

amount of billow. The minimum number of stripe subdivisions is
two.

Form:
[v, f] = StripedQuadrant(l, nStripes, billow, nSub)

Inputs

l (1,1) Length of quadrant edge along x/y axes (not

hypotenuse)
nStripes (1,1) Number of stripes
billow (1,1) Billow fraction, between 0 and 1
nSub (1,1) Subdivisions (rows of faces) per stripe,

optional

Outputs

v (:,3) Vertices
f (:,3) Faces

Note that when put together into a sail, this model does not take into account the edges of each
quadrant, and that the quadrants should meet at zero displacement along that edge. This region is
relatively small compared to the breadth of the stripes across the quadrant.

33

3.5. SAIL CONFIGURATIONS CHAPTER 3. BUILDING A SAIL MODEL

34

CHAPTER 4

DISTURBANCES

This chapter discusses how to use the disturbance functions, along with several related functions
for defining the appropriate data structures.

4.1 Function Overview

>> help Disturbances
Sail/Disturbances

D
DisturbanceStruct - Return a default data structure for

SailDisturbance.

E
EnvironmentStruct - Return a default data structure for

SailEnvironment.

H
HingeRotationMatrix - Transformation matrix for an

arbitrary number of single axis rotations.

O
OpticalMcInnesToPSS - Convert McInnes optical coefficients

to PSS format.

P
ProfileStruct - Return a default profile structure

for SailDisturbance.

S
SailDisturbance - Compute the forces and torques on a

solar sail vehicle.
SailEnvironment - Space environment models. Designed to

work with SailDisturbance.

35

4.2. SOLAR PRESSURE FORCE FUNCTION CHAPTER 4. DISTURBANCES

SolarPressureForce - Combined thermal and optical solar
pressure force model.

Sail/Demos/Disturbances

E
EarthOrbitDisturbances - Demonstrate the solar sail

disturbance model in Earth orbit.

H
HelioDisturbances - Demonstrate the solar sail

disturbance model in heliocentric orbit.

S
SolarForceDemo - Demonstrate the solar pressure force

function using a striped sail

4.2 Solar pressure force function

SolarPressureForce is a special function for sail membranes which combines the thermal
and optical force models. This assumes that the membrane is at a constant temperature, which
is appropriate since it is of negligible thickness. The front and back properties must be specified
separately as shown in the header of the function. The function is vectorized to handle a set of
element areas such as for a sail mesh. It is designed to be called for a single sun vector.

1 %

2 % Combined thermal and optical solar pressure force model.
3 % Returns both the solar force and membrane temperature on each element.
4 % The optical coefficients may be arrays or constant over all elements.
5 % Has a built-in demo.
6 %

7 % Form:
8 % [f, T, fT] = SolarPressureForce(area, nB, uSun, flux, optical,

emissivity)
9 %

10 %
11 % ------
12 % Inputs
13 % ------
14 % area (1,n) Vector of areas
15 % nB (3,n) Element normals in the body frame
16 % uSun (3,1) Unit vector to sun in body frame
17 % flux (1,1) Incoming flux, W
18 % optical (:) Optical coefficient structure
19 % .sigmaS (n,2) or (1,2)
20 % .sigmaD (n,2) or (1,2)

36

CHAPTER 4. DISTURBANCES 4.2. SOLAR PRESSURE FORCE FUNCTION

21 % .sigmaA (n,2) or (1,2)
22 % emissivity (n,2) Front and back thermal emissivity, can be [1,2]
23 %
24 % -------
25 % Outputs
26 % -------
27 % f (3,n) Element forces (N)
28 % T (1,n) Element temperatures (k)
29 % fT (3,1) Total force on component (N)
30 %

The function has a built-in demo. A single area element of 10 square meters is specified. The
normal is rotated in a circle in the X-Y plane and the sun vector is along the X axis. The front
of the sail has these optical coefficients: 0.8 specular fraction, 0.1 diffuse and 0.1 absorptive. The
back of the sail has these coefficients: 0.7 specular, 0.1 diffuse and 0.2 absorptive.

1 if nargin == 0
2 % Demo
3 area = 10;
4 a = linspace(-pi/2,pi/2);
5 n = [cos(a);sin(a);zeros(1,length(a))];
6 s = [1;0;0];
7 flux = SolarFlx(1);
8 emissivity = [0.02 0.27];
9 optical.sigmaS = [0.8 0.7];
10 optical.sigmaA = [0.1 0.2];
11 optical.sigmaD = [0.1 0.1];
12 f = zeros(3,100);
13 T = zeros(1,100);
14 if nargout == 0
15 for k = 1:100
16 [f(:,k), T(k)] = SolarPressureForce(area, n(:,k), s, flux, optical,

emissivity);
17 end
18 Plot2D(a*180/pi,[f;T],’Angle (deg)’,{’Force (N)’ ’T (K)’},...
19 ’Sail Force and Temperature’,’lin’,{1:3,4})
20 subplot(2,1,1); legend(’x’,’y’,’z’)
21 Plot2D(a*180/pi, [n;Unit(f)], ’Angle (deg)’,{’x’,’y’,’z’}, ’Front

Normal and Force Directions’,....
22 ’lin’,{[1 4],[2 5],[3 6]})
23 legend(’n’,’f’)
24 NewFig(’Sail Force Vector’)
25 hold on
26 nQ = 1:2:length(a);
27 q = quiver3(zeros(1,50),zeros(1,50),zeros(1,50),n(1,nQ),n(2,nQ),n(3,nQ

));
28 set(q,’color’,’b’);
29 q = quiver3(2*n(1,nQ),2*n(2,nQ),2*n(3,nQ),f(1,nQ),f(2,nQ),f(3,nQ))
30 set(q,’color’,’r’);

The force and element temperature are shown in Figure 4.1 on the following page. The temperature
is seen to drop as the sail is edge on to the flux (angles of 90, and 270 degrees) and a higher
temperature peak is reached when the more absorptive back side of the sail is towards the sun

37

4.3. ENVIRONMENT FUNCTION CHAPTER 4. DISTURBANCES

(angle of 180 degrees).

Figure 4.1. Solar pressure force model demo

Sail Force and Temperature

0 50 100 150 200 250 300 350 400
−10

−5

0

5
x 10

−5

F
or

ce
 (

N
)

0 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

T
 (

K
)

Angle (deg)

x
y
z

The force direction is best seen on a quiver plot. In Figure 4.2 on the next page, the normal of
the front of the sail is shown in blue. The resulting scaled force vector is shown in red. The sun
vector is shown in yellow, along the x-axis. We can see visually that the force vector is always
pointing away from the sun and that the magnitude scales down as the element becomes edge-on,
i.e. when the normal is aligned with the y-axis. When the element normal is facing away from
the sun vector, the function automatically uses the back properties as “front” instead. You can see
a slight misalignment between the force and normal at some angles due to the non-ideal optical
properties.

4.3 Environment Function

The environment function must be called as a precursor to the disturbance function. This will
gather information on the environment of the central body. The function is

env = SailEnvironment(planet, p, d)

SailEnvironment maintains persistent memory of the central planet for efficiency and will
reset automatically when called with a different planet name as the first input. The profile struct p
requiresthe following fields:

• jD, Julian date of epoch

38

CHAPTER 4. DISTURBANCES 4.3. ENVIRONMENT FUNCTION

Figure 4.2. Force and normal directions using a quiver plot

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

• r, position vector(s) of spacecraft relative to central planet

• rPlanetH, the heliocentric position of the planet. This field can be empty if the central
body is the sun.

The data structure d requires the following fields describing the environment:

• magModel, name of magnetic field model, for example BDipole

• atmModel, name of atmospheric density model, for example AtmDens1 or AtmDens2

• j70, data for the J70 atmospheric model if it has been selected in the previous field.

The function EnvironmentStruct returns a default data structure with these fields. It can also
be called with an existing data structure and the fields will be added.

The planet choices include the major planets and the sun. The planets are referenced by name,
for example ’Earth’ or ’sun’. The function returns a structure with the environmental data,
including:

• planet, Planet name

• radiation, Black body radiation

• albedo, Planet albedo fraction

• radius, Planet equatorial radius (km)

39

4.4. DISTURBANCE FUNCTION CHAPTER 4. DISTURBANCES

• mu, Gravitational parameter

• uSun, Unit vector to sun, ECI frame

• solarFlux, Solar radiation flux (W/m2)

• altitude, Altitude above the planet (km)

• rho, Atmospheric density (kg/m3)*

• bField, Magnetic field strength*

• radiationFlux, Planetary radiation flux (W/m2)*

• albedoFlux, Planetary albedo flux (W/m2)*

The marked fields do not apply to the sun.

Planetary data is obtained from the Constant function. Planetary eclipses (when in planetary or-
bit) are modeled but lunar (or any moon) eclipses are not modeled. Eclipses are also not computed
for heliocentric orbits.

4.4 Disturbance Function

The disturbance computation function is SailDisturbance(g, p, e, d); which takes
as inputs a CAD model, g, an attitude and orbit profile structure, p, the environment data e, and a
parameter structure, d. The scripts EarthOrbitDisturbances and HelioDisturbances
demonstrate the function. The data structures are defined in the header. The function DisturbanceStruct
returns a default data structure with the fields needed in d. This function can also be called with
an existing data structure and the fields will be added.

The model assumes that the solar sail is composed of a core with multiple bodies attached to
the core. Any component can be a sail membrane, which uses a combined thermal and optical
property force model and requires both front and back properties. The function automatically adds
an additional component for the back of each solar sail membrane using the specified properties.
This function works on the face and vertex lists for the components. You can model a deformable
sail by changing the sail vertices on each call. Shadowing is not modeled. The function can
compute the following disturbances, which can each be turned on and off using the d structure:

• Aerodynamic force and torque

• Solar radiation pressure force and torque

• Albedo radiation force and torque

• Planetary radiation force and torque

• Gravity gradient torque

• Magnetic torque

40

CHAPTER 4. DISTURBANCES 4.5. PROFILE DATA STRUCTURE

The entered optical properties are applied to albedo and solar force and torque calculations. Radi-
ation forces and torques use the properties specified for the infrared band.

This function can be called for a single data point or with an orbit and attitude profile. The demos
listed above demonstrate the use of a profile and the built-in plots. The results of these demos are
shown in the Examples chapter.

4.5 Profile Data Structure

The profile data structure gives the attitude, orbit, and Julian date of the solar sail for each point at
which you want a disturbance calculation, in the fields q, r, v, and jD. The profile also contains
the heliocentric position of a central body other than the sun in the field rPlanetH. The function
ProfileStruct returns a default data structure with the needed fields.

In addition to the core attitude quaternion q, if your sail has gimbaled bodies attached to the core,
you must also input the gimbal angles. The gimbal arrangement is shown in Figure 4.3. You can
append gimbals by having multiple axes and angles for each body hinge. The three elements of

Figure 4.3. Gimbal configuration G i m b a l 1 G i m b a l 2
H i n g e

F r a m e a t t a c h e d t o t h e c o r e

the data structure concerned with gimbals are

• angle, Angles

• axis, Axes for angles

• body, Body hinge for angle

Each column of angle is a time step. Each row is a gimbal angle. If you had 3 double-gimbaled
bodies angle would have 6 rows. For each gimbal the angles are always ordered from the gimbal
nearest to the core to the one furthest from the core. For this example the corresponding body
array would be [1 1 2 2 3 3]. axis gives the axis of rotation for the angles. The axis of
rotation for the gimbal closest to the core is in the core frame. The next axis of rotation is in the
rotated frame of the first gimbal axis.

41

4.6. SAILDISTURBANCE DEMO CHAPTER 4. DISTURBANCES

4.6 SailDisturbance Demo

SailDisturbance has a built-in demo of a batch analysis which demonstrates the use of these
functions. The sail is analyzed in a simple low Earth orbit with sun-pointing attitude (+x pointing
towards the sun). The model, SailWithBoom, is discussed in Chapter 8 on page 77. The sail is
40 m square with non-ideal optical properties. Note that the forces are output in in the ECI frame
and the torques are in the body frame.

Listing 4.1. Built-in demo of SailDisturbance SailDisturbance

1 % Demo
2 %-----
3 if(nargin < 1)
4 % Clear the function
5 cmp = [];
6 % Load the CAD model
7 g = load(’SailWithBoom’);
8 % Specify the orbit
9 a = linspace(0,2*pi);
10 r = 7000;
11 n = length(a);
12 mu = 3.98600436e5;
13 v = sqrt(mu/r);
14 period = Period(r);
15 % Set up profile - trajectory and attitude
16 p = ProfileStruct;
17 p.jD = linspace(0,period)/86400 + JD2000;
18 p.r = r*[cos(a);sin(a);zeros(1,n)];
19 p.v = v*[sin(a);cos(a);zeros(1,n)];
20 p.q = QSunPointing(SunV1(p.jD, p.r));
21 p.angle = zeros(2,n);
22 p.axis = [1 0;0 1;0 0];
23 p.body = [2 2];
24 % Earth orbit around the sun, for SailEnvironment
25 [planet, aP, eP, iP, WP, wP, LP, jDRefP] = Planets(’rad’, ’Earth’);
26 [rX0, rY0, rZ0] = SolarSys(iP, WP, wP, aP, eP, LP, planet, jDRefP, JD2T

(p.jD));
27 p.rPlanetH = Constant(’au’)*[rX0;rY0;rZ0];
28 % Set up disturbance options
29 d = DisturbanceStruct;
30 d.aeroOn = 1.0;
31 d.albedoOn = 1.0;
32 d.solarOn = 1.0;
33 d.magOn = 1.0;
34 d.radOn = 1.0;
35 d.ggOn = 1.0;
36 % Set up environment
37 d = EnvironmentStruct(d);
38 d.planet = ’Earth’;
39 d.magModel = ’BDipole’;
40 d.atmModel = ’AtmDens2’;

42

CHAPTER 4. DISTURBANCES 4.6. SAILDISTURBANCE DEMO

41 e = SailEnvironment(d.planet, p, d);
42 if nargout == 0
43 % Perform the batch analysis
44 SailDisturbance(g, p, e, d);
45 return;
46 end
47 end

SailDisturbance

The function will plot all outputs. Five are shown here in Figure 4.4, Figure 4.5 on the next page,
Figure 4.6 on page 45, Figure 4.7 on page 45, Figure 4.8 on page 46. In the plot of solar force
we can clearly see the fixed force when the sail is illuminated, resulting from the sun-pointing
attitude, and the zero output when the sail is in eclipse. On the total force and torque plot we also
see large periodic variations. By looking at the remaining plots of gravity gradient, albedo, and
(planetary) radiation, we can trace the sources. Radiation is contributing a huge torque in y and
z, and throughout the orbit as radiation is independent of eclipses. Earth albedo contributes a few
mN of force and substantial torque when the sail is on the sun-side of the Earth. There is a smaller
gravity gradient torque.

Figure 4.4. SailDisturbance demo total force and torque

SailDisturbance: Total

0 20 40 60 80 100
−4

−2

0

2

f x (
m

N
)

0 20 40 60 80 100
−1

0

1
x 10

−3

t x (
µ

N
m

)

0 20 40 60 80 100
−10

0

10

20

f y (
m

N
)

0 20 40 60 80 100
−1

0

1
x 10

4

t y (
µ

N
m

)

0 20 40 60 80 100
−5

0

5

10

f z (
m

N
)

Sample
0 20 40 60 80 100

−5000

0

5000

t z (
µ

N
m

)

Sample

We can quickly verify the rough solar force magnitude by computing the force on an ideal sail of
this area at the Earth,

F = 2
(

1367

3× 108

)
· 1600 = 0.0146

or 14.6 mN. Given this the solar forces make sense, confirming that the sail is pointed squarely at
the sun.

43

4.6. SAILDISTURBANCE DEMO CHAPTER 4. DISTURBANCES

Figure 4.5. SailDisturbance demo solar force and torque

SailDisturbance: Total Solar

0 20 40 60 80 100
−3

−2

−1

0

f x (
m

N
)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

t x (
µ

N
m

)

0 20 40 60 80 100
0

5

10

15

f y (
m

N
)

0 20 40 60 80 100
0

10

20

30

t y (
µ

N
m

)

0 20 40 60 80 100
0

2

4

6

f z (
m

N
)

Sample
0 20 40 60 80 100

0

1

2

3

t z (
µ

N
m

)

Sample

Additional disturbance examples are reviewed in 8.2 on page 80.

44

CHAPTER 4. DISTURBANCES 4.6. SAILDISTURBANCE DEMO

Figure 4.6. SailDisturbance demo gravity gradient torque

SailDisturbance: Total Gravity Gradient and Magnetic

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−3

tG
G

x (
µ

N
m

)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

tM
ag

z (
µ

N
m

)

0 20 40 60 80 100
−40

−20

0

20

40

tG
G

x (
µ

N
m

)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

tM
ag

y (
µ

N
m

)

0 20 40 60 80 100
0

10

20

30

tG
G

y (
µ

N
m

)

Sample
0 20 40 60 80 100

−1

−0.5

0

0.5

1

tM
ag

z (
µ

N
m

)

Sample

Figure 4.7. SailDisturbance demo albedo

SailDisturbance: Total Albedo

0 20 40 60 80 100
−0.5

0

0.5

1

f x (
m

N
)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

t x (
µ

N
m

)

0 20 40 60 80 100
−4

−3

−2

−1

0

f y (
m

N
)

0 20 40 60 80 100
−1000

−500

0

500

1000

t y (
µ

N
m

)

0 20 40 60 80 100
−1.5

−1

−0.5

0

f z (
m

N
)

Sample
0 20 40 60 80 100

−800

−600

−400

−200

0

t z (
µ

N
m

)

Sample

45

4.6. SAILDISTURBANCE DEMO CHAPTER 4. DISTURBANCES

Figure 4.8. SailDisturbance demo radiation

SailDisturbance: Total Radiation

0 20 40 60 80 100
−1

0

1

2

f x (
m

N
)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

t x (
µ

N
m

)

0 20 40 60 80 100
−3

−2

−1

0

1

f y (
m

N
)

0 20 40 60 80 100
−5000

0

5000

t y (
µ

N
m

)

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

f z (
m

N
)

Sample
0 20 40 60 80 100

−4000

−2000

0

2000

4000

t z (
µ

N
m

)

Sample

46

CHAPTER 5

ATTITUDE DYNAMICS

This chapter shows you how to use the special attitude dynamics models included in the Solar Sail
Module.

5.1 Function Overview

>> help AttitudeDynamics
Sail/AttitudeDynamics

F
FCoreAndMoving - Example system RHS which

incorporates FMovingBody.
FMovingBody - Moving body dynamics model with

instantaneous velocities.
FSailRB - Rigid body right-hand-side for Sail

module.
FSailTB - Rewrite of FTB in preferred sail

module format
FTimeVaryingI - Attitude RHS with time varying

inertia of a single body.

H
HGimballedBoom - Calculate angular momentum of boom

system and update the body rates.

M
MassVehicle - Compute the mass data structure.

T
TwoBodyRateModel - Gimballed boom dynamics model for

fixed gimbal rates.

47

5.2. RIGID BODY DYNAMICS CHAPTER 5. ATTITUDE DYNAMICS

5.2 Rigid Body Dynamics

The simplest implementation, rigid body dynamics, can be implemented using either FRB or
FSailRB. Both models include quaternion kinematics.

The Core Toolbox function FRB can be integrated using PSS’ Runge-Kutta integrators, for exam-
ple

x = RK4(’FRB’, x, dT, t, inr, invInr, tS.total);

where x is the state consisting of a stacked quaternion and body rate vector.

5.3 General Two-Body Dynamics

The functions FTB and TBModel in the Core Toolbox implement a general two-body dynamical
model.

The function FTB incorporates quaternion kinematics and calls the two-body dynamics model
function TBModel, which is described below. The inputs to FTB includes the 14-component state
vector for the two rigid bodies containing 2 sets of four quaternion elements and three angular
velocity components, the time stamp, relative positions of the centers of mass of the two bodies,
mass and inertia properties, force and torque inputs, and a specification of the unconstrained axes
of the second rigid body in iAxis. The force input contains all the external force components
acting at centers of mass. The torque input contains the total external torque acting on the body,
and the internal control hinge torque. The output of FTB is the vector of state derivatives xDot.

The function TBModelmodels any two rigid bodies attached by a hinge, whose number of degrees
of freedom can range from 1 to 3. This function essentially takes the necessary state, force and
torque specifications, and the mass and inertia properties of the rigid body, which may be specified
by through the function FTB for example, and outputs the angular accelerations, the total angular
momentum of the system and the generalized inertia matrix. The numbers of the axes that are
unconstrained must be specified in the structure element d.iAxis. For example, if the 1st and
3rd axes are unconstrained d.iAxis must be set to [1 3]. For a three degree of freedom hinge
the iAxis must be set to [1 2 3].

5.4 Fixed Rate Rotating and Translating Bodies

The function FMovingBody.m incorporates a general translating and rotating body dynamics
model with instantaneous velocities, which is appropriate for a system with stepping motors. The
core body rates must be explicitly updated when any attached body attains new rates.

The demo MovingBodyDemo.m illustrates the application of FMovingBody.m to translating

48

CHAPTER 5. ATTITUDE DYNAMICS5.4. FIXED RATE ROTATING AND TRANSLATING BODIES

bodies and verifies angular momentum conservation for zero external torque. The 13 states for
each body, position, velocity, quaternion, and body rates, are stacked. In this case, the core is given
random body rates and the masses have non-zero initial positions.

wCore = randn(3,1)*0.1;
xCore = [zeros(6,1);QZero;wCore];
xMass1 = [[0;2;0];zeros(10,1)];
xMass2 = [[0;0;-2];zeros(10,1)];
x = [xCore;xMass1;xMass2];

The velocities are updated several times during the demo. The code which updates the core rates
is

[x, h] = FMovingBody(’init’, x, xNew, [], d);

This function call also returns the angular momentum of the state x.

Since FMovingBody only returns the attitude states, it must be combined with the translational
dynamics in another function. For this demo the function is FCoreAndMoving. This is the
function which is actually integrated in the line

[z, x] = ode113(’FCoreAndMoving’, [t(k-1) t(k)], x, xODEOptions,
d);

The results for this demo are shown in Figure 5.1.

Figure 5.1. MovingBodyDemo sample results

Core Angular Rate (rad/s)

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

om
eg

a
(r

ad
/s

)

Time (sec)

Moving Mass Position (m)

0 10 20 30 40 50 60 70 80 90 100
−7

−6

−5

−4

−3

−2

−1

0

1

2

r

Time (sec)

Additional examples of this dynamics function include SMAGuidanceWithBoom, which models
a rotating boom on a general hinge, and BallastMass2Axis, which demonstrates sail control
using two moving masses.

The function TwoBodyRateModel.m incorporates a gimballed boom dynamics model using
fixed gimbal rates. This function is described in Section 5.6.2.

49

5.5. TIME VARYING INERTIA CHAPTER 5. ATTITUDE DYNAMICS

5.5 Time Varying Inertia

The function FTimeVaryingI.m models the orbit and attitude dynamics of a single rigid body
with a time-varying inertia. The inputs to this function are time, state vector (four quaternion
elements and angular velocity), force, torque and the name of the function that provides the inertia
derivative. The output is the state derivative vector.

The dynamics are
Iω̇ + İω + ω × h = T (5.1)

where ω are the body rates, T is the total external torque, and h is the angular momentum or Iω.
The state consists of the quaternion and the body rates plus the nine inertia elements.

The inertia derivative function must be of the form

Idot = FInertia(t, d)

where Idot is returned as a 3x3 matrix. The FTimeVaryingI function includes a default zero
derivative function IDotDefault which can be used for debugging during script setup.

The demo S4Deployment.m, which simulates the dynamics of a solar sail while deploying,
uses FTimeVaryingI.m with the inertia derivative function IDotS4. Figure 5.2 on the next
page shows the variation of body rates, inertia and inertia derivatives for an implementation of this
demo. The CAD model is created in S4Deploy; it can create both pre- and post-deployment
versions of the model. A special torque function S4DeployTorque models a changing center-
of-pressure offset. This demo was created from a student paper which analyzed ATK’s scalable
square sail. In summary, the following files all relate to this demo:

• S4Deployment.m
• IDotS4.m
• S4Deploy.m
• S4DeployTorque.m
• S4Deployed.mat
• S4PreDeploy.mat

5.6 Special Two-Gimbal Model for a Boom

5.6.1 Dynamical Equations

To simplify the model, we will assume that the gimbals achieve their nominal rate instantaneously.
This means that we do not have to model the gimbal torque explicitly. We do however have to
model a momentum sink on the spacecraft, such as reaction wheels, to absorb the momentum

50

CHAPTER 5. ATTITUDE DYNAMICS5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOM

Figure 5.2. Solar sail deployment demo

changes caused by dynamically moving the center of mass. This will keep the core body rates
fixed as the boom moves to a specified orientation.

We use Hooker’s derivation for multibody dynamics but will neglect the derivatives of the gim-
bal rates. Hooker [6] begins with the equations of motion for each body, including the constraint
torques at each joint. A solvable system of equations is obtained by first summing all the body
equations to form one equation, which eliminates these constraint torques. Second, the body equa-
tions are summed for each hinge outward, resulting in n − 1 equations each with the constraint
torque of the innermost hinge.

The equations of motion for a single body λ with connective joints Jλ in the set of connected
bodies S are ∑

µ∈S
Φλµω̇µ = Eλ +

∑
j∈Jλ

TCλj (5.2)

in which

Eλ = 3G
ρ3
× Φλλρ̃+ ωλ × Φλλωλ + T extλ +

∑
j∈Jλ T

H
λj +Dλ × F ext

λ +∑
µ∈Jλ Dλµ ×

[∑
µ∈Sλj F

ext
µ +mωµ × [ωµ ×Dµλ] +m G

ρ3
(I − 3ρ̃ρ̃T)Dµλ

] (5.3)

whereD are augmented hinge vectors or barycenters, Φ are augmented inertia matrices for the tree,
m is the total vehicle mass, and G is the gravitational constant. The torques transmitted through
motors or gimbals are in TH , while the non-gravitational external forces and torques are in F ext

λ

and T extλ . The constraint torques TC are eliminated by summing these equations over all the bodies
and, for fixed λ, summing all bodies beyond a joint j. This provides a system of equations for the
rates of the core body and the gimbal rates, or one vector rate equation and n scalar rate equations.
The barycenters D can be understood more easily when diagrammed. For a body λ, Dλ is the
vector from the bodys center of mass to the new center of mass obtained by lumping all directly
connected bodies at their respective joints. Dλj , or Dλµ if the hinge index j is replaced by the
index of the connected body.

51

5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOMCHAPTER 5. ATTITUDE DYNAMICS

The inertia matrices Φ are defined as

Φλλ = Φλ −mλD
×
λD

×
λ −

∑
µ6=λ

mµD
×
λµD

×
λµ (5.4)

Φλµ = mD×µλD
×
λµ (5.5)

The rate of any body except the core is written as

ωµ = ω0 +
n−3∑
k=1

εkµγ̇kgk (5.6)

where γ is the angle of rotation about unit vector g, and εkµ indicates if that gk belongs to a joint
on the chain connecting body µ and 0. This definition of ωµ is substituted into the left-hand sides
of the summed equations of motion, resulting in the combined equation∑

λ

∑
µ

Φλµ · (ω̇0 +
∑
k

(γ̈kgk + γ̇kġk)) =
∑
λ

Eλ (5.7)

At this point we diverge further from Hooker’s tensor formulation as we require true matrix no-
tation, including all transformations. Each body equation is written in its own frame, requiring
tranformations of ω0 and E when the equations are summed. The inertial rate of any body in its
own frame is written explicitly as

ωµ = BT
µ0ω0 +

n−3∑
k=1

εkµγ̇kB
T
µkgk (5.8)

where Bij transforms a vector in the i frame to the j frame. Equation (5.7) is written in the core
frame, so each equation and right-hand-side must also be transformed. The result is

∑
λ

Bλ0

∑
µ

Φλµ(BT
µ0ω̇0 + ˙BT

µ0ω0 +
∑
k

εkµ(γ̈kB
T
µkgk + γ̇kḂ

T
µkgk)) =

∑
λ

Bλ0Eλ (5.9)

This is the first system equation. The remainder are obtained by summing equations from each joint
j outward. Then, a dot product is taken with each resulting equation and the axis of rotation gj .
This leaves a scalar equation in which the constraint torque at j is eliminated since it is orthogonal
to the axis of rotation.

The dynamical equations can be written as a single matrix equation in the following way (for two
joints):  A00 ~a01 ~a02

~a10 a11 a12
~a20 a21 a22


 ω̇0

γ̈1
γ̈2

 =


∑
λBλ0E

′
λ

gT1
∑
λ ε1λE

′
λ

gT2
∑
λ ε2λE

′
λ

 (5.10)

where
E ′λ = Eλ −

∑
µ

φλµḂ
T
µ0ω0 −

∑
µ

Φλµ(
∑
k

εkµγ̇kḂ
T
µ gk) (5.11)

Note that this generalized inertia matrix A is symmetric.

52

CHAPTER 5. ATTITUDE DYNAMICS5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOM

Now we can formulate the equations for our specific case two bodies with two hinges, including
vector notation and all transformation matrices. The sailcraft is grouped into two bodies. The
sail is considered the core body, and the gimballed boom the attached body. The vectors from the
center of mass of each body to its joints are denoted by L.

First we write the angular velocity of the attached body in its own frame as a combination of the
two gimbal rates. The rates γk at the hinges will take the values of α and β for clarity. The rotation
axis vectors g are expressed in the previous frame.

Ω = αBβgα + βgβ (5.12)

We move next to the definition of the generalized inertia matrix, A, which is a combination of
matrix A00, vectors ~a, and scalars a. The indices µ and λ take the values 0 and 1. However, it is
important to note that there is only a single joint in this case, which consists of the two gimbals.

A00 =
∑
λ

∑
µ

Φλµ = Φ00 + Φ01 + Φ11 + Φ10 (5.13)

Including the necessary transformations, A becomes

A00 = Φ00 + Φ01B
T +B(Φ10 + Φ11B

T) (5.14)

Since there are only two bodies, we simplify the matrix B10, which transforms vectors in the 1
frame to the 0 frame, to B. BT is therefore the same as B01. We will now neglect the a terms and
write the resulting equation for ω̇0,[

Φ00 + Φ01B
T +B(Φ10 + Φ11B

T)
]
ω̇0 = E ′0 +BE ′1 (5.15)

The next step is deriving the generalized inertia matrices Φ. These depend on the barycenters D
and, in fact, the physical interpretation of Φ11 is the inertia matrix of the augmented body λ about
its barycenter D1. First we write out the barycentric vectors. Note that there is only one joint. The
resulting vectors are shown in Figure 5.3 on the following page.

Dλ = − 1

m

∑
µ 6=λ

mµLλµ (5.16)

D0 = −m1

m
L0

D1 = −m0

m
L1

Dλµ = Dλ + Lλµ (5.17)

D01 = D0 + L0 =
−m1 +m

m
L0 =

m0

m
L0

D10 =
m1

m
L1

53

5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOMCHAPTER 5. ATTITUDE DYNAMICS

Figure 5.3. Solar sail barycenters

Now we can write out the augmented inertia matrices. We will substitute the D’s defined above
without showing the intermediate steps. m̄ indicates the reduced mass of the system, m1m2

m
.

Φii = Φi − m̄L×i L×i (5.18)
Φii = m̄L×i L

×
j

The Li must also be expressed in the correct frame. li is used to denote the vectors expressed in
their respective body frames. Each Φijis expresssed in the i frame with a transformation matrix
used for the vectors in the j frame.

Φ00 = Φ0 − m̄l×0 l×0 (5.19)
Φ01 = m̄l×0 B l×1 (5.20)
Φ11 = Φ1 − m̄l×1 l×1 (5.21)
Φ10 = m̄l×1 B l×0 (5.22)

The final step to calculating the right-hand-side of the equations is writing out the E vector. This
includes external disturbances, gimbal/hinge torques (TH), and the effect of each body on the other.

E0 =
3G

ρ3
ρ̂× Φ00ρ̂− ω0 × Φ00ω0 + T ext0 + TH01 +D0 × F ext

0 (5.23)

+D01 ×
{
F ext
1 +mω1 × [ω1 ×D10] +m

G

ρ3
(I − 3ρ̂ρ̂T)D10

}
E ′0 = E0 −

∑
µ

Φ0µḂ
T
µ0ω0 −

∑
µ

Φ0µ · (εαµα̇ġα + εβµβ̇ġbeta) (5.24)

= E0 − Φ01(Ḃ
Tω0 + α̇ġα + β̇ġβ) (5.25)

The derivative of the transformation matrix is obtained by multiplying by the skew of the angular
rate, in this case the rate of the attached body Ω from Equation 5.12. The second gimbal axis is
fixed in the body frame leaving only the first axis with a derivative. The axis derivative is in the
transformation matrix as the vector has unit length.

E ′0 = E0 − Φ01(−BTΩ×ω0 + ˙alphaḂαgα) (5.26)

The E vector for the attached body is very much the same.

E1 =
3G

ρ3
ρ̂× Φ11ρ̂− ω1 × Φ11ω1 + T ext1 + TH11 +D1 × F ext

1 (5.27)

54

CHAPTER 5. ATTITUDE DYNAMICS5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOM

+D10 ×
{
F ext
0 +mω0 × [ω0 ×D01] +m

G

ρ3
(I − 3ρ̂ρ̂T)D01

}
E ′1 = E1 −

∑
µ

Φ1µḂ
T
µ0ω0 −

∑
µ

Φ1µ · (εαµα̇ġα + εβµβ̇ġbeta) (5.28)

= E1 − Φ11(−ḂTΩ×ω0 + α̇ġα + β̇ġβ) (5.29)

The vector ρ, from the Earth to the spacecraft, is taken to the spacecrafts composite center of mass
and is the same for both E0 and E1.

Each rotation is defined by an axis and an angle. Each rotation is denoted asBθ. The transformation
from the core body frame to the attached body is the combination of the transformations,

B01 = BβBα (5.30)

In this case the second axis is fixed in the body frame and has zero derivative. The first axis is
expressed in the body frame as

gBα = Bβg
C
α (5.31)

The derivative of the first gimbal axis, ġα, in the body frame is then easy to express in terms of its
outbound angular velocity.

ġα = α̇BβΩ×αgα (5.32)
Ωα = β̇gβ (5.33)

Angular momentum conservation (in the absence of external forces and torques) is used to verify
the model. The momentum is taken about the aggregate center of mass of the two bodies. In this
case we take the indices of the bodies to be 1 and 2.

Figure 5.4. Aggregate center of mass

The total inertial angular momentum can be written as

H = AI1ω1 + ABI2(ω2 +BTω1) +m1D
×
1 Ḋ1 +m2D

×
2 Ḋ2 + AhW (5.34)

where the inertias and angular rates are taken in the respective body frames, A transforms from the
first body frame into the inertial frame, B transforms from the second body frame to the first, and
hW is the stored momentum which keeps the body rates from coupling to the gimbal rates. The

55

5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOMCHAPTER 5. ATTITUDE DYNAMICS

D vectors are d from Figure 5.4 on the previous page expressed in the inertial frame. They are
expressed using the body frame vectors l as

D1 = m2

m
A(l1 −Bl2)

D2 = m1

m
A(l1 −Bl2)

(5.35)

Ḋ1 = m2

m
A(ω×1 (l1 −Bl2)−Bω×2 l2)

Ḋ2 = −m1

m
A(ω×1 (l1 −Bl2)−Bω×2 l2)

(5.36)

For this formulation we need to express ω2 in the body 2 frame.

ω2 = α̇Bβgα + β̇gβ (5.37)

When the gimbals are assigned a new velocity, the angular momentum change is computed and the
adjustment added to hW so that ω1 remains constant.

5.6.2 Two Body Functions

This derivation is implemented in the function TwoBodyRateModel.m. It provides the kine-
matics of the quaternion derivative in addition to the dynamics of the rate derivative. This function
is used in the demo BoomControl.m, discussed in the next section. In addition the function
HGimballedBoom.m determines the change in momentum when the gimbal rates change, which
must be absorbed in a sink such as a set of reaction wheels.

Listing.

1 %

2 % Gimballed boom dynamics model for fixed gimbal rates.
3 % The core body should be body 1 and the boom body 2 in the CAD model.
4 % The gimbal rates are termed aDot.
5 %

6 % Form:
7 % [xDot, h, gIner] = TwoBodyRateModel(x, t, force, torque, g, p, hW)
8 %

9 %
10 % ------
11 % Inputs
12 % ------
13 % t (1,1) Time
14 % x (15,1) The state vector [q;omega;a;aDot]
15 % force (:) Force structure
16 % .totalBody (3,1,2) Total torque on the

vehicle
17 % torque (:) Torque structure

56

CHAPTER 5. ATTITUDE DYNAMICS5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOM

18 % .totalBody (3,1,2) Total torque on the
vehicle

19 % g (1,1) CAD model
20 % p (1,1) Profile
21 % hW (3,1) Stored angular momentum, body frame
22 %
23 % -------
24 % Outputs
25 % -------
26 % xDot (7+2n,1) [qDot;omegaDot;aDot;aDDot]
27 % h (3,1) Inertial angular momentum in the body frame
28 % gIner (3+n,3+n) Generalized inertia matrix
29 %
30 %

Listing.

1 %

2 % Calculate angular momentum of boom system and update the body rates.
3 %

4 % Form:
5 % [hI, hW] = HGimballedBoom(x, g, axis, aDotNew)
6 %

7 %
8 % ------
9 % Inputs
10 % ------
11 % x (15,1) The state vector [r;v;q;omega;a;aDot]
12 % g (1,1) CAD model
13 % axis (3,2) Rotation axes of gimbals
14 % aDotNew (2,1) New gimbal rates
15 % hW (3,1) Stored angular momentum
16 %
17 % -------
18 % Outputs
19 % -------
20 % hI (3,1) Inertial angular momentum
21 % hW (3,1) Updated stored momentum
22 %
23 %

--

57

5.6. SPECIAL TWO-GIMBAL MODEL FOR A BOOMCHAPTER 5. ATTITUDE DYNAMICS

5.6.3 Example

The demo BoomMomentumDemo verifies that the model conserves momentum for any set of body
and gimbal rates given no external forces and torques. The user can change the simulation time
step to verify that smaller steps result in better conservation. The simulation uses a fourth order
Runge-Kutta integrator.

Figure 5.5. Momentum Conservation Verification Demo Results

Magnitude of Angular Momentum Change, dt = 1 s

0 1 2 3 4 5 6 7 8 9
10

−16

10
−15

10
−14

10
−13

|∆
H

|

Time (sec)

Magnitude of Angular Momentum Change, dt = 10 s

10 20 30 40 50 60 70 80 90
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

|∆
H

|

Time (sec)

58

CHAPTER 6

SAIL ATTITUDE ACTUATORS

This chapter describes how to model certain common sail attitude control schemes, including

• Sliding masses

• Vanes

• Gimballed boom

6.1 Sliding Masses

Sliding masses involves moving mass around the sail to create an offset between the center of mass
and center of pressure of the sail, resulting in a torque. The torque model is

~T = (~rcp − ~rcm)× ~F

Control of both transverse axes can be achieved with a single mass on a two-axis track system or
with two separate masses on tracks at right angles. The dynamics of this mechanism can be treated
in multiple ways depending on how the masses move along the tracks. For example, stepping
motors can be modeled as achieving fixed rates instantaneously. Otherwise the masses can be
treated using multibody dynamics.

The CAD model PlateWithMasses builds a 100 m specular sail model with two masses. The
sail normal is along the body x axis and the masses are assigned to the y and z axes. Each mass is
given its own body in the CAD structure to facilitate describing its position and recomputing the
resulting mass properties. Each sliding mass is 10 kg, the core mass is 100 kg, and the sail mass is
30 kg.

The +Y mass body is created with the lines

1 %% Trim Masses
2 %------------
3 m = CreateBody(’make’, ’Mass’, ’Trim Y’,...

59

6.1. SLIDING MASSES CHAPTER 6. SAIL ATTITUDE ACTUATORS

The mass components are created with

1

2 %% Trim
3 %-----
4 trimName = {’Y’,’Z’};
5 for k = 1:2
6 m = CreateComponent(’make’, ’sphere’,’radius’, 0.1, ’faceColor’, ’

magenta’,...
7 ’rA’, [0;0;0], ’mass’, massTrim, ’name’, [’Trim ’ trimName{k}],...

The masses are assigned to be inside the sail so that their surface properties will be ignored during
the disturbance calculations.

The script BallastMass1Axis demonstrates this CAD model with the actuation functions
TorqueToCM and CMToMassPositions. The script demonstrates commanding a new ori-
entation of the sail normal. A simple torque model is used instead of the full disturbance model;
the force is assumed to be along the x-axis. The sail normal is determined using pitch and yaw
angles from a 3-2-1 Euler angle set.

n̂ =

 cos θy cos θz
cos θy sin θz
− sin θy


For small angles, this reduces to

n̂ =

 1

θz
−θy


These angles can be used as errors for determining y and z torques for the ballast mass system.
Euler angles cannot be used directly since rotation about the y and z axes when these Euler angles
are nonzero results in changes of the x Euler angle.

The actuator demand is computed in the lines

1

2 % Actuation

The masses of each body (including the core) are passed in mControl, the initial offset vec-
tors dOffset are assumed to be zero, and the unit vector for control of each mass is given in
uControl. The center of pressure Cp is assumed to be at the origin. The positions of the vectors
along the track are designated ρ. Figure 6.1 on the facing page shows the geometry.

The torque model is implemented in the lines

1

2 % Disturbances - simple torque model
3 g.body(2).rHinge = [0;rhoActual(1);0];
4 g.body(3).rHinge = [0;0;rhoActual(2)];

60

CHAPTER 6. SAIL ATTITUDE ACTUATORS 6.2. VANES

Figure 6.1. Sliding Mass Geometry

d0

d ρ2

u1

u2

O

ρ1

The rHinge fields are used to indicate how eventual integration with the full disturbance model
would be performed.

The dynamics assume fixed rates for the masses, which are computed in this discrete simulation so
that the masses will achieve the commanded position on the next step (30 seconds). The dynamics
are implemented in the function FMovingBody. The rate computation is performed in the lines

1 rhoCommand = CMToMassPositions(cM, mControl, dOffset, uControl);
2 rhoActual = [x(iR1); x(iR2)];

This simple setup will work for one or two-axis control if the angles are small. For example, in
Figure 6.2 the step angle command is 0.01 in both transverse axes.

Figure 6.2. Two axis control using moving masses on a specular sail

Euler Angle Errors

0 200 400 600 800 1000 1200 1400 1600 1800
−1

0

1

R
ol

l

0 200 400 600 800 1000 1200 1400 1600 1800
−10

−5

0

5
x 10

−3

P
itc

h

0 200 400 600 800 1000 1200 1400 1600 1800
−10

−5

0

5
x 10

−3

Y
aw

Time (s)

Trim Mass Positions

0 200 400 600 800 1000 1200 1400 1600 1800
−1.5

−1

−0.5

0

0.5

1

y

0 200 400 600 800 1000 1200 1400 1600 1800
−1

−0.5

0

0.5

1

1.5

z

Time (s)

Inertial Quaternion

0 200 400 600 800 1000 1200 1400 1600 1800
0.9999

1

1

qS

0 200 400 600 800 1000 1200 1400 1600 1800
−1

0

1
x 10

−20

qX

0 200 400 600 800 1000 1200 1400 1600 1800
−0.01

−0.005

0

qY

0 200 400 600 800 1000 1200 1400 1600 1800
−0.01

−0.005

0

qZ

Time (s)

6.2 Vanes

Vanes refer to smaller sections of sail membrane mounted on a rotating mechanism. Two vanes
set at equal and opposite angles can be used to control one axis using a windmill effect and more
vanes can be used to control multiple axes. The torque produced is nonlinear since the force on the

61

6.2. VANES CHAPTER 6. SAIL ATTITUDE ACTUATORS

vanes follows the same solar pressure force laws as the regular sail membrane (cosine squared),
making three-axis control with vanes challenging. We will show an example where a pair of vanes
is used for roll control (control about the sail normal axis).

Each vane applies a force on the sail at its center-of-mass, which are summed to produce a torque.

~T =
∑
i

~rcmi × ~Fsi

Computing the desired angle for a control vane requires a model of the force produced. Assuming
specular reflection, the force is

Fi = 2PsA cos γ n̂

where γ is the total angle between the vane normal and the sun vector, so that A cos γ is the
projected area of the vane.

Assuming also that the vane is aligned with the sail and rotates around a single axis, the vane
normal vector in the sail body frame is

n̂ =

 cos θ

sin θ

0


The vane may first be canted backwards away from the plane of the sail. This is done in some sail
designs for static stability. If the cant angle is φ, then the sail normal with the cant angle included
is

n̂ =

 cos θ cosφ

sin θ

− sinφ cos θ


The torques around the transverse axis cancel while the torques around the x axis sum, resulting in
a control torque model of

Tx = 2rcm sin θ · (2PsA cosφ)

The CAD model PlateWithVanes demonstrates a pair of vanes on a 100 m square specularly
reflective sail (plate). The vanes are canted back 25 degrees and each have an area equal to 5% of
the main sail area. The model has three bodies, with the plate as the core body and each vane having
its own body. This does not imply any multi-body dynamics but serves to facilitate specifying the
orientation of the vanes.

The vane bodies are created with using CreateBody.

Listing 6.1. Define first vane body PlateWithVanes

1 thetaCant = 15*pi/180; % vanes are canted back for stability
2 bCant = Eul2Mat([0;thetaCant;0]);
3 m = CreateBody(’make’, ’name’, ’Vane 1’, ’previousBody’, 1, ’rHinge’,

rHingeVane(:,1),...

PlateWithVanes

The vane components are created using CreateComponent.

62

CHAPTER 6. SAIL ATTITUDE ACTUATORS 6.2. VANES

Listing 6.2. Define vane components PlateWithVanes

1 ’vertex’,v ,’face’, [1 2 3; 1 3 4], ’inside’, 0);
2 BuildCADModel(’add component’, m);
3

4 %% Vanes - right triangles. Treat as masses at end of booms for inertia.
5 %--
6 areaVane = fracVane*areaSail;
7 massVane = arealMass*areaVane;
8 lVane = sqrt(2*areaVane);
9 hVane = 2*sqrt(areaVane);
10 sVane = sqrt(lVaneˆ2 - (hVane/2)ˆ2);
11 v = [0 0 0;...
12 0 hVane/2 -hVane/2;...
13 0 sVane sVane]’;
14 f = [1 2 3];
15 vaneName = {’+Z’ ’-Z’};
16

17 for k = 1:2
18 m = CreateComponent(’make’, ’sail’, ’faceColor’, ’mirror’, ’edgeColor’,

[1 0.8 0.34],...
19 ’vertex’, v, ’face’, f,...
20 ’rA’, [0;0;0], ’mass’

, massVane, ’name’
, [’Vane ’
vaneName{k}], ’
body’, k+1,...

21 ’sigmaS’, [1 1], ’sigmaD’, [0 0], ’sigmaA’, [0 0],
...

PlateWithVanes

As indicated in the comment, in this case we are not computing the inertia of the vanes but are
treating them as masses at the end of the sail booms. The inertia could be computed from the
vertices v using VFToMassStructure, which would result in the vehicle inertia changing when
the vanes are rotated. For initial verification of the CAD and disturbance set up it is easier to neglect
this.

The sigmaS property being set to 1 indicates that the vane is treated as 100% specularly reflective.
The resulting CAD model is shown in Figure 6.3 on the following page.

This CAD model is demonstrated with the full disturbance model in VaneControl1Axis. The
disturbance model profile is updated each step with a new angle for each vane which is about the
specific vector. This example does not include any dynamics for the vanes, they are assumed to
achieve the commanded angle instantaneously compared to the time scale of the attitude controller.

The profile for the vanes is initialized by specifying the body ID for each vane and the body rotation
axes (z). The angles are initialized to zero.

Listing 6.3. Define vane profile states VaneControl1Axis

1 p = ProfileStruct;

63

6.2. VANES CHAPTER 6. SAIL ATTITUDE ACTUATORS

Figure 6.3. 3D view of PlateWithVanes

2 p.q = qS;
3 p.r = r;
4 p.v = v;

VaneControl1Axis

The commanded angle is computed from the torque demand and applied to the profile inside the
simulation loop.

Listing 6.4. Compute vane angle command VaneControl1Axis

1 % Control
2 yN = cC*xN + dC*angleError;
3 xN = aC*xN + bC*angleError;
4 Tcommand = -g.mass.inertia(1,1)*yN;

VaneControl1Axis

Determining the angle requires knowledge of the vane area and distance to its center of mass
(lBoom).

The script demonstrates a 0.01 radian (0.57 degree) step command angle in the sail roll angle. The
sail is initially pointed directly at the sun using the quaternion produced by QSail. The maximum
vane angle commanded is 2.5 degrees. Now that the geometry and profile setup has been verified,
the model could be extended with nonideal properties, true inertias, and non-zero sail sun angle.

64

CHAPTER 6. SAIL ATTITUDE ACTUATORS 6.3. GIMBALLED BOOM

Figure 6.4. Roll control using specular vanes on a specular sail

Commanded Control Vane Angle

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

A
ng

le
 (

de
g)

Time (sec)

Roll Error and Body Rate (deg)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.6

−0.4

−0.2

0

0.2

δ
θ x

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

ω
x

Time (sec)

Inertial Quaternion

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2
x 10

−14

qS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4
x 10

−16

qX

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.005

0.01

qY

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.9999

1

qZ

Time (sec)

6.3 Gimballed Boom

A gimballed boom is one form of center of mass actuation; the sliding masses discussed in the
next section are another. A boom with two perpendicular gimbals can be oriented anywhere in the
hemisphere. Practically, boom motion would probably be restricted to some cone.

The torque model is
~T = (~rcp − ~rcm)× ~F

Modeling a particular set of gimbals means selecting which axis each gimbal controls and devel-
oping the kinematics for determining which gimbals angles should be selected for a given boom
orientation. The function TorqueToCM can be used to determine where the center of mass should
be in the transverse plane to produce the commanded torque given a center of pressure vector. The
boom geometry (length and mass) is then used to determine the boom unit vector which will result
in this center of mass. The quaternion or gimbal angles, if used, are then computed.

The Core Toolbox has a dynamics model, TBModel, which can be used to model the full two-
body dynamics. This model requires the hinge torque at the gimbal interface to be an input to
the dynamics. Alternatively, the model TwoBodyTwoRate can be used to model two gimbals
at specific fixed rates. This model assumes that the change in core momentum produced when
the gimbals achieve new rates is stored in a momentum sink, such as a set of reaction wheels.
Otherwise, when the boom is moved, the sail will also move to conserve angular momentum.

The CAD model PlateWithBoom builds a 40 m specular sail model with a 10 m gimballed
boom. The sail normal is along the body x axis. The boom is a separate body from the core.

The script BoomActuation demonstrates this CAD model with a double gimbal model and the
full disturbance model. The first (inner) gimbal is along the boom x axis and the second along the
y axis. The angles α and β are assigned to these gimbals. The gimbal dynamics are modeled as
fixed-rate using TwoBodyRateModel. Each gimbal angle and rate is a state. In this script, each
gimbal is given a target angle sequence and the boom slews as the fixed rate allows. The resulting
torques from the full disturbance model can then be verified.

The gimbal angles are initialized in the CAD profile with the given rotation axes. Both angles are

65

6.3. GIMBALLED BOOM CHAPTER 6. SAIL ATTITUDE ACTUATORS

referenced to the second body (the boom).

p.angle = [0;0];
p.axis = [1 0;0 1;0 0];
p.body = [2 2];

The boom unit vector - nominally along the x axis - can be determined from the gimbals angles
as

uB = Eul2Mat([alpha;0;0])’*Eul2Mat([0;beta;0])’*[1;0;0];

The gimbal rates for the fixed rate model are computed using

[aDot,angleCommand] = GimbalRates(x(8:9), [alpha;beta], aNom,
dT);

where aNom is the nominal gimbal rate, x(8:9) are the current gimbal angles, and [alpha;beta]
are the commanded gimbal angles. GimbalRates will look for the closest gimbal angle set
which places the boom unit vector in the correct location, since there are two sets of angles defin-
ing every vector, (α, β) and (α + π,−β), so the actual commanded angles are returned as well as
the gimbal rates. The function uses a discrete time step so that if the angles can be reached within
dT at the nominal rate, an average rate is computed so the target angles are reached exactly.

Once the new rates are computed, the body rates must be adjusted before the integration step. This
is accomplished with

[hPlot(:,k), hW] = HGimballedBoom([zeros(6,1);x], g, p.axis,
aDot, hW);

x(10:11) = aDot;

where the angular momentum is stored in a plotting array. The stored momentum hW is updated
so that the sail core rates do not change as the boom moves. The sail rates will change only as a
result of the torque applied via the new sail center-of-mass.

The integration is performed with

x = RK4(’TwoBodyRateModel’, x, dT, t, f, tq, g, p, hW);

After integration, the CAD profile is updated for the next step with the achieved gimbal angles.

p.angle = x(8:9);

66

CHAPTER 6. SAIL ATTITUDE ACTUATORS 6.3. GIMBALLED BOOM

Figure 6.5. Double-gimballed boom actuation demo showing a sequence of commanded gimbal
angles

Commanded CM of Sailcraft

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

Z

Y

Command
Actual

Commanded and Actual Gimbal Angles

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

α
(o

ut
er

)

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

β
(in

ne
r)

Time (s)

Command
Actual

Body Rates

0 50 100 150 200 250 300 350 400 450 500
−0.04

−0.02

0

0.02

x

0 50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

0.1

0.15

y

0 50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

z

Time (s)

67

6.3. GIMBALLED BOOM CHAPTER 6. SAIL ATTITUDE ACTUATORS

68

CHAPTER 7

ORBIT DYNAMICS AND EPHEMERIS

7.1 Function Overview

In this chapter we will discuss functions in the OrbitDynamics and SailEphem folders. The orbit
dynamics functions are listed below using the help command.

>> help Dynamics
Sail/Dynamics

F
FOrbitGeneral - General gravity model allowing

point mass and harmonic models.
FOrbitSingle - Gravity model allowing a point mass

or harmonic models for a single body.
FRotatingFrame - Three-body dynamics in the rotating

frame with a solar sail.
FRotatingLagrange - Sail orbit RHS in a 3 body

dimensionless rotating frame.
FRotatingPlanet - Sail orbit RHS in a planet-centered

cylindrical rotating frame.
FRotatingSun - Sail orbit equations in a sun-

centered cylindrical rotating frame.
FSailCombined - Simulation right hand side. Calls

all needed portions in order.
FSailEarthMoon - Sail dynamics with spherical

harmonic models of the Earth and Moon
gravity.

FSailEarthSun - Sail dynamics in the Earth-Sun
three-body system.

FSailGuidance - Right-hand-side for sail with fixed
cone and clock angles (McInnes).

R
RHS2DOrbit - This function is for the planar

orbit problem.
RHS3DOrbit - This function is the right-hand-

side for the 3D orbit optimization problem.

69

7.2. ORBIT DYNAMICS CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS

RHSCartesian - Right-hand-side for point-mass
cartesian orbit with external acceleration.

RHSCartesianRadialAccel - Right-hand-side for point-mass
cartesian orbit with radial acceleration.

RHSEquinoctial - Right-hand-side for equinoctial
elements.

RHSOpt2DOrbit - Right-hand-side for the planar
orbit optimization problem.

RHSOpt3DOrbit - This function is the right-hand-
side for the 3D orbit optimization problem.

V
VarEqSailPlanet - Sail variational equations in state

space form for a planet-centered orbit.

The special sail ephemeris functions are listed below.
>> help SailEphem

Sail/SailEphem

S
SailEphemAlmanac - Location of planets relative to Sun

in ecliptic frame using the almanac.
SailEphemEarth - Location of Earth relative to Sun

in the ecliptic frame.
SailEphemJPL - Location of planets relative to Sun

in ecliptic frame using JPL ephemerides.

7.2 Orbit Dynamics

The Solar Sail Module enables you to perform simulations with Keplerian orbit kinematics, simple
point-mass orbit dynamics, spherical harmonic gravity models, and multibody models combining
spherical harmonic and point-mass perturbations. The functions include

• FOrbitSingle

• FOrbitGeneral

• FSailGuidance

FOrbitSingle and FOrbitGeneral have the same form, and the general version allows
multiple bodies, some of which may have spherical harmonic models. FSailGuidance is an
example of orbit dynamics combined with sail guidance into a single right-hand-side; it computes
a sail acceleration from McInnes cone and clock angles and adds it to the point mass orbit acceler-
ation. This function is demonstrated in LocalOptimalSim.

The Core Toolbox also has gravity models which can be used in custom right-hand-sides, for
example FOrbCart provides a Cartesian point-mass orbit for any gravitational parameter.

The functions RHSOpt2DOrbit and RHSOpt3DOrbit are for use with the TrajectoryOptimization
function.

70

CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS 7.2. ORBIT DYNAMICS

7.2.1 Combined right-hand-side

The function FSailCombined allows you to combine the ephemeris, attitude dynamics, and
orbit dynamics into a single right-hand-side call. It also allows you to specify an environment and
disturbance function.

The coupled right-hand-side has the form

xDot = FSailCombined(t, x, jD, p, d)

The format is designed for use with ode113. t is the mission elapsed time in seconds x is the
state vector. The state vector is always

[r;v;q;omega;additional attitude states]

Thus the first 4 terms, 13 states in all, define the basic rigid body states: position of the center-of-
mass, velocity of the center-of-mass, quaternion from the ECI from to the body frame and angular
rate defined in the body frame. p contains the profile data. d contains any additional information
needed by the separate dynamics functions. At a minimum d includes the fields

• ephemeris - the name of the ephemeris function.

• environment - the function providing the environment data.

• disturbance - the name of the external disturbance function.

• attitude - the name of the attitude dynamics function.

• orbit - the name of the orbit dynamics function.

• guidance - the name of a guidance function in place of attitude dynamics.

• g - data structure generated by the CAD script.

• jD0

This list of fields can be obtained by calling FSailCombined with no inputs.

>> d = FSailCombined()
d =

ephemeris: []
environment: []
disturbance: []

attitude: []
orbit: []

guidance: []
jD0: 2451545

center: 1
g: [1x1 struct]

Any non-empty value for the guidance field will override the attitude dynamics function. The
attitude will be fixed to the output of the guidance functions before the disturbance function is

71

7.2. ORBIT DYNAMICS CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS

called. The center field is an index into the list of planets stored in the orbit dynamics model.
The dynamics functions are of the form:

Ephemeris

rB = FEphemeris(jD, d)

Attitude

xADot = FAttitude(t, x, f, tq, d)

or

q = FGuidance(t, x, d, env)

For examples, see FSailRB or SPIGuidance.

Orbit

xODot = FOrbit(t, x, rB, center, jD, accel)

The orbit function must also be able to return a list of names of the stored planets using the call

planets = FOrbit(’planets’)

See for example FOrbitGeneral and FOrbitSingle.

Environment and Disturbances

The environment data, for example the solar flux at the spacecraft location, is obtained first, then
passed to the disturbance function. The profile is updated with the position r, velocity v, quaternion
q and Julian date jD using the mission elapsed time and state input to FSailCombined. The
planet parameter is updated internally using the center field of d.

env = FEnvironment(planet, p, d)

[f, tq] = FDisturbance(g, p, env, d)

The force and torque from the disturbance routine are passed to the attitude and orbit routines.

7.2.2 Specialized Coordinate Systems

The Solar Sail Module contains several orbit dynamics functions that are in specialized coordinate
systems, for instance for studying trajectories near Lagrange points.

72

CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS 7.3. EPHEMERIS

7.3 Ephemeris

The Core Toolbox has almanac functions for obtaining the ephemeris of the planets1, moon, and
sun. For example, the following functions are available in Ephem:

• MoonV1 2

• MoonV2 3

• PlanetPosition
• SolarSys
• SunV1 4

• SunV2 5

The toolbox also has the capability to use a JPL ephemeris file such as the DE405 set within the
Toolbox. The functions PlanetPosJPL and SolarSysJPL provide equivalence to PlanetPosition
and SolarSys. A special format is available for use with FSailCombined, see SailEphem.

>> help SailEphem

Sail/SailEphem

S
SailEphemAlmanac - Location of planets relative to Sun in

ecliptic frame using the almanac.
SailEphemEarth - Location of Earth relative to Sun in the

ecliptic frame.
SailEphemJPL - Location of planets relative to Sun in

ecliptic frame using JPL ephemerides.

Each of these wrapper functions has the same format to facilitate switching between them and reuse
of code. A data structure is used to pass in the parameters, such as planet IDs. SailEphemEarth
is used in the demos SailCombinedDemo and ST9CombinedDemo. SailEphemAlmanac
is the default ephemeris function used in FSailCombined if no other ephemeris function is
specified. The header for the almanac function is shown below. It explains that the function is
essentially a wrapper for PlanetPosition.

>> help SailEphemAlmanac

Location of planets relative to Sun in ecliptic frame using
the almanac.

1Explanatory Supplement to the Astronomical Almanac (1992.) Table 5.8.1. p. 316.
2The 1993 Astronomical Almanac, p. D46.
3Montenbruck, O., Pfleger, T., Astronomy on the Personal Computer, Springer-Verlag, Berlin, 1991, pp. 103-111.
4 The 1993 Astronomical Almanac, p. C24.
5Montenbruck and Pfleger, p. 36.

73

7.3. EPHEMERIS CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS

This function obtains the moon position using MoonV1. The
function

PlanetPosition must be initialized with the desired planet IDs
before

calling this function. This format is for use with
FSailCombined.

Note that the planet IDs are 1-9, the Moon ID is 10, and the
sun ID is 0.

If called with a vector of dates will compute the location of
the

center only.

See also PlanetPosition and PlanetPosJPL.

Form:
rB = SailEphemAlmanac(jD, d)

Inputs

jD (1,1) Julian date(s).
d (:) Data structure.

.kP Array of planet IDs
.center Index of gravity center, used in

batch mode

Outputs

rB (3,:) Position of planets OR positions of center

planet

It’s easy to create a quick test of the ephemeris. For instance, to get the positions of Venus, Earth,
Moon, and Mars, note that the planet IDs are 2, 3, 10 and 4, respectively, and just do:

jD = Date2JD; % use today’s date
PlanetPosition(’initialize’,[2 3 4]); % only pass major planets to

PlanetPosition
d.kP = [2 3 4 10]; % add the moon at the end
rB = SailEphemAlmanac(jD, d)

rB =

74

CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS 7.3. EPHEMERIS

-9.213e+07 1.3764e+08 4.8653e+07 1.3729e+08
5.5701e+07 5.6175e+07 2.0781e+08 5.6266e+07
6.08e+06 -1777.2 3.1587e+06 10035

NASA’s Jet Propulsion Laboratory (JPL) freely provides these ASCII Lunar and Planetary Ephemerides
which can be downloaded from its website at the ftp site at ftp://ssd.jpl.nasa.gov/pub/eph/export
with help at
http://ssd.jpl.nasa.gov/?planet eph export. The MATLAB functions require binary versions of the
ephemeris which are system-dependent and therefore must be created by users. See the Spacecraft
Control Toolbox User’s Guide for more information. Note that the AsteroidTrajectory
demo uses the SolarSysJPL and PlanetPosJPL ephemeris functions directly.

75

7.3. EPHEMERIS CHAPTER 7. ORBIT DYNAMICS AND EPHEMERIS

76

CHAPTER 8

ANALYSIS

This chapter goes through several examples of different kinds of analysis which can be performed
with the toolbox. Detailed analysis with specific geometry for disturbances or actuation generally
requires the creation of a CAD model, so that is discussed first.

8.1 Creating a CAD Model

A two body model is created using a script which employs the SCT function BuildCADModel.
For the purpose of this demonstration the sail is modeled as a core box with an attached 40 m
square sail. The core box has a two degree of freedom hinge to which is mounted a 10 m mast
with another box at the end. The mast is modeled as another box. Thus the sail consists of three
boxes, a two degree of freedom hinge actuator, and a flat plate sail. All components are assumed
to be rigid. The core box and sail are assumed to be the core and the mast and mast tip box are the
second body which will be called the boom.

The example script name is SailWithBoom. When you run the script, the CAD Builder GUI
will appear to let you view the data in the resulting model. If you select the menu on the left hand
side you will get a list of components. If you push the Vehicle tab you will bring up a pane that
will allow you to view the spacecraft as a whole. These views are shown in Figure 8.1 on the next
page. The two figures in Figure 8.2 on the following page show an exploded view of the core box,
gimbal, mast and boom box on the left and the entire spacecraft on the right.

The script is organized with all properties at the top. The GUI is initialized and then the bodies
are defined. Next, the components are defined using CreateComponent. This script has five
components: the core box, gimbal cylinder, sail, mast, and mast box. The sail uses the special
sail component type which will invoke the combined thermal and optical disturbance model. Each
component is assigned to a specific body, so that the properties for each body can then be computed
by the CAD builder. The finished model is extracted and stored as a mat-file in the SailData
directory of the module.

The sail component type bears elaboration. All components have optical properties which are

77

8.1. CREATING A CAD MODEL CHAPTER 8. ANALYSIS

Figure 8.1. Solar sail CAD model viewer, Component and Vehicle tabs

Figure 8.2. 3D views of the spacecraft

assumed to be uniform over the component, and such components are generally assumed to be
three-dimensional solids. The sail type of component is assumed to be a membrane, and receives
special treatment in the SailDisturbance function, where the combined thermal and optical
force function SolarPressureForce is used. The membrane must have both front and back
properties specified separately. Each of these could be an array so that each face of the component
has different properties. This sail has only two faces which are specified explicitly with the vertices,
and the front and back properties are each uniform. The mirror color is used to make the sail appear
shiny in MATLAB 3D plots, but has no bearing on the optical properties used in the disturbance
computation.

m = CreateComponent(’make’, ’sail’,’name’,’Sail’,’body’,1,...
’mass’, massSail, ’faceColor’, ’mirror’,’rA’

,[-coreWidth/2;0;0],...

78

CHAPTER 8. ANALYSIS 8.1. CREATING A CAD MODEL

’sigmaS’, [0.9 0.85], ’sigmaD’, [0.02 0.05],
’sigmaA’, [0.08 0.1], ’emissivity’, [0.03,
0.3],...

’vertex’,v ,’face’, [1 2 3; 1 3 4], ’inside’,
0);

The sail is specified as two triangles using the vertex and face fields of MATLAB graphics
objects. Recall that all PSS CAD models are stored as sets of triangular patches. The order of the
vertices in the face field will determine the direction of the normal of the patch area. The optical
coefficients for specular reflection, diffuse reflection, and absorption are stored in the sigma fields.

Note that the sail mass structure is passed in using the variable massSail. The Inertias
function is used to compute the inertia of a plate with the desired sail mass and dimensions. An
offset in the center of mass would be entered via the mass structure.

The resulting CAD model is stored as a data structure. You can view the fields by displaying the
final structure g.

g =
name: ’Solar Sail’

units: ’mks’
body: [1x2 struct]

component: [1x5 struct]
radius: 1.012654309228969e+01

mass: [1x1 struct]

We want to check the normals of the sail to make sure that they are pointing forwards in the
coordinate frame. We can view the names of the model’s components,

>> {g.component.name}
ans =

’CoreBox’ ’Gimbal’ ’Sail’ ’BoomBox’ ’Mast’

and we see that the sail is the third component, so we can examine all of its properties by displaying
that substructure.

>> g.component(3)
ans =

faceColor: [1 1 1]
edgeColor: [1 1 1]

diffuseStrength: 0
specularStrength: 1
specularExponent: 100

specularColorReflectance: 1
b: [3x3 double]

rA: [3x1 double]
v: [4x3 double]
f: [2x3 double]
a: [2x1 double]
n: [2x3 double]

79

8.2. PERFORMING A DISTURBANCE ANALYSIS CHAPTER 8. ANALYSIS

r: [2x3 double]
radius: [2x1 double]

deviceInfo: []
class: ’sail’
name: ’Sail’

optical: [1x1 struct]
infrared: [1x1 struct]
thermal: [1x1 struct]

power: [1x1 struct]
aero: [1x1 struct]

magnetic: [1x1 struct]
mass: [1x1 struct]

inside: 0
rF: [1x1 struct]

body: 1
manufacturer: ’none’

model: ’generic’

In this listing we can see that the sail component is of the sail class. The normals are stored in n
and the areas in a. r gives the vector to the centroid of each patch from the origin of the vehicle
coordinate system.

>> g.component(3).n
ans =

1 0 0
1 0 0

>> g.component(3).r
ans =

-2.500000000000000e-01 -6.666666666666668e+00
6.666666666666668e+00

-2.500000000000000e-01 6.666666666666668e+00
-6.666666666666668e+00

>> g.component(3).a
ans =

800
800

8.2 Performing a Disturbance Analysis

There are two examples of disturbance analysis which use the SailWithBoom model. Each
demo uses the SailEnvironment and SailDisturbance functions in sequence.

• EarthOrbitDisturbances.m

• HelioDisturbances.m

80

CHAPTER 8. ANALYSIS 8.2. PERFORMING A DISTURBANCE ANALYSIS

In the case of the Earth orbit example, the location of the Earth relative to the sun must be computed
and passed to the disturbance function. This is required to allow the user to use any ephemeris
without embedding fixed options into the disturbance function itself. The entire orbit is computed
a priori using SolarSys and passed into the functions in a single call.

% Earth orbit around the sun
%---------------------------
[planet, aP, eP, iP, WP, wP, LP, jDRefP] = Planets(’rad’, ’Earth’

);
[rX0, rY0, rZ0] = SolarSys(iP, WP, wP, aP, eP, LP, planet, jDRefP

, JD2T(p.jD));
p.rPlanetH = Constant(’au’)*[rX0;rY0;rZ0];

The profile, including the orbit, is stored in p while the disturbance model flags are stored in d.
The environment data including solar flux is passed to the disturbance function in e. You can view
each of these structures from the command line after running the demo.

e = SailEnvironment(d.planet, p, d);
SailDisturbance(g, p, e, d);

SailDisturbance automatically generates a set of plots when it is called without any outputs.
The reference orbit and total disturbances are shown for reference in Figure 8.3. The sail follows
a sun-pointing profile throughout the orbit via the function QSunPointing.

Figure 8.3. Sample of Earth orbit disturbances demo output

SailDisturbance: Total

0 20 40 60 80 100
−4

−2

0

2

f x (
m

N
)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
x 10

−3

t x (
µ

N
m

)

0 20 40 60 80 100
0

5

10

15

f y (
m

N
)

0 20 40 60 80 100
−5000

0

5000

t y (
µ

N
m

)

0 20 40 60 80 100
0

2

4

6

f z (
m

N
)

Sample
0 20 40 60 80 100

−4000

−2000

0

2000

4000

t z (
µ

N
m

)

Sample

The heliocentric demo uses the same sun-pointing profile with an orbit that has an apogee of 1 AU
and a perigee of 0.25 AU. Many of the disturbances, such as magnetic field and planetary radiation,
are turned off as they are not relevant in this type of orbit. The only disturbance remaining is solar
radiation pressure. The sample output is shown in Figure 8.4 on the following page.

In this case the environment structure e is

>> e
e =

81

8.3. SIMULATING THE ATTITUDE DYNAMICS CHAPTER 8. ANALYSIS

Figure 8.4. Sample of heliocentric orbit disturbances demo output

SailDisturbance: Total Solar

0 20 40 60 80 100
−200

0

200

400

f x (
m

N
)

0 20 40 60 80 100
−1

0

1

t x (
µ

N
m

)

0 20 40 60 80 100
−200

0

200

f y (
m

N
)

0 20 40 60 80 100
−5

0

5

10
x 10

−12

t y (
µ

N
m

)

0 20 40 60 80 100
−50

0

50

f z (
m

N
)

Sample
0 20 40 60 80 100

−1

0

1

2
x 10

−11

t z (
µ

N
m

)

Sample

planet: ’sun’
uSun: [3x100 double]

radiation: 0
albedo: 0
radius: 695990

mu: 132712438000
altitude: [1x100 double]

solarFlux: [1x100 double]
eclipseFraction: [1x100 double]

radiationFlux: [1x100 double]
albedoFlux: [1x100 double]

rho: [1x100 double]
bField: [3x100 double]

8.3 Simulating the Attitude Dynamics

The most basic example of attitude dynamics is the evolution of a rigid body’s attitude with distur-
bances. The very simple script AttitudeDemo shows this for a flat plate model at a single point
in a heliocentric orbit. The sail starts with an initial attitude and body rate, and the attitude is then
evolved in a simulation loop. The rigid body dynamics are in the function FRB which is designed
for use with PSS’ fourth order Runge-Kutta integrator RK4. This example provides a basis for
adding a discrete controller; the resulting torque would be added to the disturbance torque at each
step.

The initial states are defined in the lines

% Quaternion (sun pointing with an offset)
%---
q0 = QMult(QSunPointing(-Unit(p.r)), AU2Q(0.05,[0;1;0]));

82

CHAPTER 8. ANALYSIS 8.3. SIMULATING THE ATTITUDE DYNAMICS

% Initial body rate
%------------------
w0 = [0.001;0.0005;-0.001]/100;

and the integration is performed in the line

% Integrate the rigid body dynamics
%----------------------------------
x = RK4(’FRB’, x, dT, t, inr, invInr, tS.total);

where the inverse inertia, which is fixed, has ben previously computed. tS is the torque structure
returned by the disturbance function.

The simulation runs for 100 steps with a time step of 100 seconds. The resulting quaternion and
body rates are plotted along with the force and torque computed by the disturbance function. In
this case, the sail is symmetric so that the solar torque is zero. This could be easily changed for
demonstration purposes by adding a small offset to the center-of-mass.

This demo also shows you how to quickly visualize a stored CAD model. The same function
that is used by the CAD builder to view a model after you have run a CAD script can be used
independently at any time with the CAD data structure to get a 3D view.

DrawSCPlanPlugIn(’initialize’,g)
view(3); axis equal; axis square;

The resulting view of the plate is shown in Figure 8.5.

Figure 8.5. Flat plate model used in AttitudeDemo

83

8.4. BOOM CONTROL DEMO CHAPTER 8. ANALYSIS

8.4 Boom Control Demo

This demo, BoomControl.m, involves a boom with 1-2 gimbals; that is, the first gimbal is along
the body X axis and the second gimbal is along the y axis. This is shown in Figure 8.6 and
Figure 8.7.

Figure 8.6. Boom frames of gimbals from two viewpoints

Figure 8.7. Boom gimbals

The simulation update step includes the disturbance calculation, control calculation, momentum
adjustment step, and finally the integration of the RHS.

Listing. Disturbance calculation, from CAD model g and profile p

1 %--------------------------
2 % Compute the disturbances.
3 %--------------------------
4 [f,tq] = SailDisturbance(g, p, d);
5 tqPlot(4:6,k) = tq.total;

84

CHAPTER 8. ANALYSIS 8.4. BOOM CONTROL DEMO

The control calculation has several parts, including the calculation of the control acceleration,
resulting gimbal angles, and finally applying the rate velocity limits. It is desirable to have more
intelligent selection of alpha and beta angular error, since one set of rotations may result in less
total angle change than another. The simplest logic is shown here.

Listing. Control update

1 %-----------------
2 % Boom control
3 %-----------------
4

5 % Sign conventions
6 %-----------------
7 if(qC(1) < 0)
8 qC = -qC;
9 end
10 qIToB = x(1:4);
11 if(qIToB(1) < 0)
12 qIToB = -qIToB;
13 end
14

15 %

16 % Euler angle error in body frame. We are only considering Y and Z
errors.

17 % Determine from commanded normal in body frame.
18 %

19 uSailB = QForm(qIToB, uI);
20 errY = uSailB(3);
21 errZ = -uSailB(2);
22 eulErr = [errY;errZ];
23

24 % Control law and torque
25 %-----------------------
26 angleError = [0;eulErr];
27 accel = cC*xN + dC*angleError;
28 xN = aC*xN + bC*angleError;
29 tExt = -g.mass.inertia*accel;
30

31 % Cp/Cm offset
32 %-------------
33 cM = pinv(aBoom)/cos(cone0)ˆ2*-tExt/(mB/(mC+mB));
34 mCM = Mag(cM);
35 if (mCM >= rBoomCM)
36 % requesting CM beyond reach of boom
37 hB = 0;
38 else
39 % Boom unit vector component along normal
40 hB = sqrt(rBoomCMˆ2 - mCMˆ2);
41 end
42 uB = Unit([hB;cM]);

85

8.5. HELIOPAUSE GUIDANCE MISSION DEMO CHAPTER 8. ANALYSIS

43

44 % Gimbal angles (12 sequence)
45 %----------------------------
46 beta = acos(uB(1));
47 alpha = atan2(uB(2),-uB(3));
48

49 % Gimbal rate limiting
50 %---------------------
51 [aDot,angleCommand] = GimbalRates(x(8:9), [alpha;beta], aNom, dTi);

The last part of the simulation step is the angular momentum adjustment for the new gimbals rates
and the integration of the attitude right-hand-side. The profile is then updated for the disturbance
calculation in the next step.

Listing.

1 %-------------
2 % RHS
3 %-------------
4 [hPlot(:,k), hW] = HGimballedBoom([zeros(6,1);x], g, p.axis, aDot, hW)

;
5 x(10:11) = aDot;
6

7 % Integrate
8 %----------
9 x = RK4(’TwoBodyRateModel’, x, dTi, t, f, tq, g, p, hW);
10

11 % Update profiles
12 %----------------
13 t = t + dTi;
14 p.jD = p.jD + dT/86400;
15 p.q = x(1:4,:);
16 p.angle = x(8:9);

The sample maneuver involves 0.1 rad clock angle (for a cone angle of 0.5) from a heliocentric
orbit. That is, clockCommand is 0.1 while clock0 is 0. In Figure 8.8 on the facing page we
can clearly see the boom ramp up to the commanded position at the maximum gimbal rate.

8.5 Heliopause Guidance Mission Demo

This example simulates a heliopause mission. The first step is to build a CAD model with a single
flat plate. This is done in FlatPlate . Only one component and one body is in this model, which
is the sail.

Listing 8.1. FlatPlate CAD model script FlatPlate.m

1

86

CHAPTER 8. ANALYSIS 8.5. HELIOPAUSE GUIDANCE MISSION DEMO

Figure 8.8. Boom demo results for 0.1 rad cone angle maneuver

Quaternion

0 50 100 150 200 250 300 350 400 450 500
0.998

1

1.002

qS

0 50 100 150 200 250 300 350 400 450 500
−5

0

5
x 10

−18

qX

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

qY

0 50 100 150 200 250 300 350 400 450 500
4

6

8
x 10

−17

qZ

Time (s)

Body Rates

0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5
x 10

−21

y

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6
x 10

−4

y

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5
x 10

−19

y

Time (s)

Commanded and Actual Gimbal Angles

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1
x 10

−14

α

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

0.1

β

Time (s)

Commanded and Actual Torque (Nm)

0 50 100 150 200 250 300 350 400 450 500
−1

0

1
x 10

−18

T
x

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10
x 10

−3

T
y

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2
x 10

−18

T
z

Time (s)

2 %% Script control
3 %---------------
4 createFiles = 1;
5

6 %% Properties
7 %-----------
8 sailWidth = sqrt(50000); % m
9 sailMass = 100.0; % kg
10

11 %% Create the sail mass structure
12 %-------------------------------
13 inertiaSail = Inertias(sailMass, [sailWidth sailWidth], ’plate’, 1);
14 bXToZ = [0 0 -1;0 1 0;1 0 0];
15 massSail = struct(’inertia’, bXToZ*inertiaSail*bXToZ’, ’mass’, sailMass

, ’cM’, [0;0;0]);
16

17 %% Initialize
18 %-----------
19 BuildCADModel(’initialize’);
20

87

8.5. HELIOPAUSE GUIDANCE MISSION DEMO CHAPTER 8. ANALYSIS

21 %% Add general properties
22 %-----------------------
23 BuildCADModel(’set name’ , ’Flat Specular Sail’);
24 BuildCADModel(’set units’, ’mks’);
25

26 %--
27 %% Create CAD bodies first
28 %--
29

30 %% Core
31 %-----
32 m = CreateBody(’make’, ’name’, ’Core’);
33 BuildCADModel(’add body’, m);
34

35 %% This creates the connections between the bodies
36 %--
37 BuildCADModel(’compute paths’);
38

39 %--
40 %% Create CAD Components second
41 %--
42

43 %% Sail
44 %-----
45 v = [0 0 0 0;0.5 -0.5 -0.5 0.5;0.5 0.5 -0.5 -0.5]’*sailWidth;
46 m = CreateComponent(’make’, ’sail’,’name’,’Sail’,’body’,1,...
47 ’mass’, massSail, ’faceColor’, ’mirror’,’rA’,[0;0;0],...

FlatPlate.m

The single body is created first and then the single sail. In this case we make the front and back
properties identical and make the sail purely specular. The geometry is specified as a vertex array
of two triangles. All vertex arrays must be for triangles, i.e. only 3 faces per polygon. You do not
have to specify a back surface for a sail. This is done by SailDisturbance automatically.

The inertia for the sail is computed by modeling the entire vehicle as a flat plate. The particular
mass and area are chosen to get an areal mass of 2 g/m2 for this example.

The simulation is implemented in the HeliopauseSimulation. This script can use either the
specular model built into RHSHelio2DOrbit or the full disturbance model. The full model is
initialized using the code

Listing 8.2. Disturbance model initialization HeliopauseSimulation

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
2

3 %% Load the flat plate model
4 %--------------------------
5 d.g = load(fullfile(’SailData’,’FlatSail.mat’));
6

7 % Scale the sail
8 %---------------
9 d.g.component(1).v = 2*d.g.component(1).v;

88

CHAPTER 8. ANALYSIS 8.5. HELIOPAUSE GUIDANCE MISSION DEMO

10

11 %% Disturbance model data
12 %-----------------------
13 d.distModel.aeroOn = 0;

HeliopauseSimulation

You don’t actually have to set the various disturbances, except solar, off when the center is the
sun but we do so for completeness. The disturbance model uses the CAD model but the built-in
specular model does not.

The sail angle is controlled using the function HeliopauseSailAngle. This fixes the angle at
-32 deg from the radial direction. This leads to a tangential velocity reversal and a very high radial
velocity as shown in Figure 8.9. The entire simulation covers one Earth year.

Figure 8.9. Heliopause trajectory

Sail Angle and Velocities

0 50 100 150 200 250 300 350 400
-33

-32.5

-32

-31.5

-31

S
ai

l A
ng

le
 (

de
g)

0 50 100 150 200 250 300 350 400
-100

0

100

200

u
(k

m
/s

)

0 50 100 150 200 250 300 350 400
-150

-100

-50

0

50

v
(k

m
/s

)

Time (days)

Velocity Reversal Trajectory

-5 -4 -3 -2 -1 0 1 2
-5

-4

-3

-2

-1

0

1

y
(a

u)

x (au)

This simple sail control brings the sail to within 0.123 astronomical units of the sun which is
probably too close for near term sail materials.

When the disturbance model option is used, it is necessary to convert the planar sail force angle
with respect to the radial direction to an ECI to body quaternion. This is done with the following
code snippet in RHSHelio2DOrbit

Listing 8.3. Disturbance model implementation in RHS RHSHelio2DOrbit

1 cA2 = cAˆ2;
2 cA3 = cA2*cA;
3

4 % Add the laser assuming the beam is directed along the sun line
5 %---
6 rMin = min([r rMin]);
7 if(d.laserOn)
8 if(r > d.laser.aU && rMin < 0.5*d.laser.aU)
9 z = Mag(r - d.laser.aU)*1000;
10 [p, rL] = LaserPower(d.laser.aperture, d.laser.lambda, z, d.laser

.power);

89

8.6. INTEGRATED GUIDANCE AND ATTITUDE CONTROL CHAPTER 8. ANALYSIS

11

12 if(pi*rLˆ2 < d.laser.area)
13 area = pi*rLˆ2;
14 else

RHSHelio2DOrbit

x(4) is the orbit angle. AU2Q converts the total angle, the sum of the orbit and sail angle
alpha, and the rotation vector (along z) to the ECI to Body quaternion. The ECI force is con-
verted into radial/tangential coordinates just after the call to SailDisturbance. The inputs to
SailDisturbance are the CAD model, profile, and control structure.

8.6 Integrated Guidance and Attitude Control

Generally it is easiest to example attitude control maneuvers and orbit guidance in isolation. How-
ever, since the attitude and orbit are more tightly coupled in solar sails than in average vehicles, it
can be desirable to combine the dynamics once the attitude control and guidance have each been
validated. Here we will consider ways to integrate guidance with a boom control scheme. The
general steps at a particular point in time are

1. Compute the environment based on the current state

2. Compute the disturbances based on the current state

3. Determine the guidance demand

4. Determine the attitude demand

5. Determine the actuator demand

6. Integrate the dynamics using the force and torque

Typical time scales for these steps might be a guidance update once or several times a day and an
attitude controller with a frequency of 0.0001 rad/sec (about 6000 sec). The actuator demand will
need to be met about five to ten times faster than the attitude controller update for stability.

The first step in combing guidance and attitude can be integrating an attitude controller of the
desired frequency with a perfect actuation model into a guidance simulation. In this case, the order
of the steps would change so that the disturbances are computed after the actuator demand, and
the dynamics of the actuators are excluded. This will be the best possible match to the guidance
profile that the attitude controller can do, before the actuation dynamics are added, and provides
information on the expected actuator profile.

The simulation can be done discretely, using a fixed time step loop at a time increment small
enough for the attitude controller. Depending on how many days (or years) of the guidance trajec-
tory you want to simulate, it may be preferable to place the attitude controller inside the integration
in a continuous format. Using PSS’ PIDMIMO control function as an example, the two options are:

90

CHAPTER 8. ANALYSIS 8.6. INTEGRATED GUIDANCE AND ATTITUDE CONTROL

% Discretize the controller at tSamp
[a, b, c, d] = PIDMIMO(inr, zeta, omega, tauInt, omegaR, tSamp)

for k = 1:n
% Compute control
xN = a*xN + b*angleError;
u = c*xN + d*angleError;

% Integrate for dT n times
x = RK4(@RHS, x, h, t, u);

end

and

% Continuous controller
[a, b, c, d] = PIDMIMO(inr, zeta, omega, tauInt, omegaR)

% Integrate for entire time duration
[t,x] = ode113(@RHS, x, h, [0 tF], a, b, c, d);

where in the second case u is computed as part of the RHS function. The first case has the advantage
that all intermediate variables are available for storage and plotting. In the second case, ode113
computes a time vector and a state vector which must then be post-processed to obtain all data of
interest, such as the controller outputs and disturbances. The second option may or may not be
faster depending on the details of the orbit and attitude dynamics; for example, if the sail passes
very close the sun, then the orbit dynamics may need a very small time step during only that portion
of the orbit. In this case, ode113 will likely be faster than RK4 with a sufficiently small time step.

The second step is to add the actuator dynamics for a more realistic attitude profile. In the case of
fixed-rate gimbals, this requires another, smaller time scale to be added to the discrete formulation.
If 600 seconds was sufficient for the attitude controller loop (control frequency of about 0.0001
rad/sec), then a time step of 60 seconds or less may be needed for the gimbal model. In order to
use a continuous model and place the actuator dynamics and control inside the right-hand side, a
continuous two-body model is needed.

The module contains the demo SMAGuidanceWithBoom which combines locally optimal semi-
major axis guidance (in a heliocentric orbit) with gimballed boom control using the PlateWithBoom
model. Fixed rate dynamics are modeled for a general hinge using FMovingBody. The Cartesian
orbit equations and attitude states are integrated together using the FBoomHinge right-hand-side.
This demo works well with an attitude control time step of 600 seconds and an inner timestep for
the boom of 120 seconds. The guidance is set on an outermost loop of two hours, since calling it
more frequently slows the simulation and the commanded cone angle changes very slowly.

The guidance is implemented in a function call with
1 p.angle = angle;
2 p.axis = u;
3

4 %------------------------

91

8.6. INTEGRATED GUIDANCE AND ATTITUDE CONTROL CHAPTER 8. ANALYSIS

In this particular case, we know that the clock angle is fixed and equal to π in the PSS sail coordi-
nate system.

The commanded cone and clock angles must be translated to attitude angle errors. This can be
done, assuming small angles, by finding the commanded normal in the current body frame. Since
the normal is along the x body axis the Euler angle errors for the commanded normal can be found
directly:

1 tG = 0;
2 end
3

4 %---
5 % Angle errors

The actuation assumes a general hinge, so once the control torque is computed and the desired
boom center-of-mass found, a corresponding axis and angle are used to limit the total boom rate.

1 % Reset outer timer
2 %------------------
3 tO = 0;
4 end

FMovingBody requires that the core rates be updated whenever the other bodies are assigned
new rates. This and the integration for one step are performed with the lines

1 cAPlot(:,k) = [coneA;clockA];
2 cCPlot(:,k) = [coneC;clockC];
3

4 %-------------
5 % Integrate
6 %-------------
7

8 % Distribute momentum
9 %--------------------
10 % new body rates
11 xRates = x;

The result is a simulation that can be run for two days in less than a minute (MATLAB 7 on Mac
PowerBook).

92

CHAPTER 8. ANALYSIS 8.6. INTEGRATED GUIDANCE AND ATTITUDE CONTROL

Figure 8.10. Integrated guidance and attitude control for semi-major axis change

Core Quaternion and Rates

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

q

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10
x 10

−6

w

Time (hours)

Actual Cone and Clock Angles (deg)

0 5 10 15 20 25 30 35 40 45 50
35

35.5

36

36.5

37

37.5

38

C
on

e

0 5 10 15 20 25 30 35 40 45 50
179

179.5

180

180.5

181

C
lo

ck

Time (hours)

Command
Actual

93

8.6. INTEGRATED GUIDANCE AND ATTITUDE CONTROL CHAPTER 8. ANALYSIS

94

CHAPTER 9

TRAJECTORY OPTIMIZATION

This chapter discusses how to use the optimization tools.

9.1 Introduction

The Solar Sail Module provides locally optimal trajectory algorithms based on McInnes[7] and
global optimization algorithms for performing trajectory optimization in 3 dimensions. The func-
tions are in the Guidance and Optimization folders.

9.2 Locally Optimal Control Laws

Locally optimal heliocentric control laws from McInnes are implemented by the Guidance func-
tions LocallyOptimalTraj and SpecularAccelFromConeClock as shown in the fol-
lowing code snippet. The first function computes the cone and clock angles. The second computes
the acceleration unit vector. The unit vector needs to be multiplied by the magnitude of the accel-
eration to get the control acceleration.

[alpha, delta] = LocallyOptimalTraj(controlType, r, v, d.mu);
accel = a*(x0/Mag(r))ˆ2;
d.a = accel*SpecularAccelFromConeClock(alpha, delta, r, v);

The demo LocalOptimalSim shows an implementation of these control laws. controlType
is one of four possible locally optimal laws for changing the following orbital elements:

controlType = ’ascending node’;
controlType = ’eccentricity’;
controlType = ’inclination’;
controlType = ’semi-major axis’;

r,v are the position and velocity vectors. d.mu is the gravitational constant in units compatible
with the position and velocity vectors. All four laws can be tested using this simulation. Results

95

9.2. LOCAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

for inclination control and semi-major axis control are shown in Figure 9.1 and Figure 9.2. The
3D plot is generated using Plot3DOrbit. This function plots the trajectory and the initial and
final orbits based on the first and last pairs of r,v respectively.

Figure 9.1. Locally optimal sail control results for inclination change

-1.5
-1

-0.5
0

0.5
1

1.5

x 10
8

-2

-1

0

1

2

x 10
8

-1.5

-1

-0.5

0

0.5

1

1.5

x 10
8

x (au)y (au)

z
(a

u
)

Inclination: Elements and Angles

0 2 4 6 8 10 12
1.45

1.5

1.55
x 10

8

a

0 2 4 6 8 10 12
0

0.5

1

i

0 2 4 6 8 10 12
0

1

2

Ω

0 2 4 6 8 10 12
0

2

4

ω

0 2 4 6 8 10 12
0

0.05

0.1

e

0 2 4 6 8 10 12
-2

0

2

α

0 2 4 6 8 10 12
0

2

4

δ

0 2 4 6 8 10 12
2.5

3

3.5
x 10

-7

ac
ce

l (
km

/s
2)

Time (years)

Figure 9.2. Locally optimal sail control of semi-major axis

Semi-major axis: 2D Trajectory

-3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

r y (
au

)

r
x
 (au)

Semi-major axis: Elements and Angles

0 2 4 6 8 10 12
0

5

10
x 10

8

a

0 2 4 6 8 10 12
-1

0

1

i

0 2 4 6 8 10 12
-1

0

1

Ω

0 2 4 6 8 10 12
0

2

4

ω

0 2 4 6 8 10 12
0

0.1

0.2

e

0 2 4 6 8 10 12
-1

0

1

α

0 2 4 6 8 10 12
0

2

4

δ

0 2 4 6 8 10 12
0

2

4
x 10

-7

ac
ce

l (
km

/s
2)

Time (years)

The results for eccentricity and ascending node are shown in Figure 9.3 on the facing page and
Figure 9.4 on the next page. These plots have been organized to exactly replicate those in the text.

96

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.2. LOCAL CONTROL

Figure 9.3. Eccentricity simulation

0 1 2 3

1.4

1.6

1.8

2

2.2

S
em

i−
m

aj
or

 a
xi

s
(a

u)

Orbit Number
0 1 2 3

0.2

0.3

0.4

0.5

0.6

0.7

E
cc

en
tr

ic
ity

Orbit Number

0 1 2 3
−40

−20

0

20

40

P
itc

h
an

gl
e

(d
eg

)

Orbit Number
−3 −2 −1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

x (au)

y
(a

u)

Figure 9.4. Ascending node simulation

0 5 10 15
0

10

20

30

40

50

60

70

A
sc

en
di

ng
 N

od
e

(d
eg

)

Orbit Number
0 5 10 15

0

50

100

150

200

C
lo

ck
 A

ng
le

 (
de

g)

Orbit Number

−0.2
0

0.2

−0.2
0

0.2

−0.2

0

0.2

X (au)Y (au)

Z
 (

au
)

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

Y (au)

Z
 (

au
)

97

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

McInnes also gives a planet-centric law for maximizing the instantaneous rate of change of the or-
bital energy. This is implemented in PlanetOptimalTraj and demonstrated in GeoOptimalSim.
The optimal pitch angle is given by

α∗ =
1

2

[
ψ − sin−1

(
sinψ

3

)]
(9.1)

where ψ is the angle between the spacecraft velocity vector and the unit vector to the sun. The sail
orientation throughout one orbit is shown in Figure 9.5. The results of a simulation of a 30 day
spiral from geostationary orbit are shown in Figure 9.6 on the next page.

Figure 9.5. Planet-centric locally optimal steering

−4 −3 −2 −1 0 1 2 3 4

x 10
4

−4

−3

−2

−1

0

1

2

3

4

x 10
4

x

y

Planet−Centered Optimal Pitch Angle

50 100 150 200 250 300 350 400 450
−100

−80

−60

−40

−20

0

20

40

60

80

100

A
lp

ha
 (

de
g)

Psi (deg)

9.3 Globally Optimal Control Laws

9.3.1 Global Methods

The TrajectoryOptimization function for global optimization supports three methods:
downhill simplex, genetic algorithms, and simulated annealing, which are described in the next
sections. The particular methods used in the Solar Sail Module are fmins and fminsearch
(MathWorks) for downhill simplex, Genetic Algorithm Optimization Toolbox (GAOT) [3] for ge-
netic algorithms and Goffe’s algorithm[5] for simulated annealing. They are summarized in the
following sections.

Downhill Simplex

The downhill simplex method is due to Nelder and Meade [8]. A simplex is defined as a figure of
N + 1 vertices in an N -dimensional space that do not lie in a hyperplane, i.e. have a finite volume.

98

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

Figure 9.6. 30 day spiral from geocentric orbit

0 10 20 30
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5
S

em
i−

m
aj

or
 a

xi
s

(k
m

)

Days
0 10 20 30

0

0.2

0.4

0.6

0.8

E
cc

en
tr

ic
ity

Days

0 10 20 30
−100

−50

0

50

100

P
itc

h
an

gl
e

(d
eg

)

Days
−1.5 −1 −0.5 0 0.5 1

x 10
5

0

5

10

15

x 10
4

This would be a tetrahedron in 3 dimensional space. Each simplex is a solution in the search space.
The simplex can be expanded

x = x0 + λ (9.2)

contracted
x = x0 − λ (9.3)

or reflected
x = −x0 (9.4)

Downhill simplex first finds the points where the objective function is the highest moving the
opposite face of the simplex to a lower point. These steps are called reflections. Steps are taken
to maintain the volume of the simplex. The method tries to take larger steps whenever possible.
When it reaches a ”valley floor” it contracts itself in a transverse direction and tries to move down
the valley.

This method requires only function evaluations, derivatives of the functions are not required. This
is particularly useful when derivatives are not available or are difficult to compute. The Solar Sail
Module uses the MathWorks fmins and fminsearch functions for this method.

99

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

Genetic Algorithms

Genetic algorithms are a subset of evolutionary algorithms [11]. A genetic algorithm is an itera-
tive procedure that consists of a constant size population of individuals, each one representing a
solution in a given problem space. The algorithm is applied to spaces too large to be solved by
exhaustive searching.

During each generation, individuals are chosen to reproduce. There are many methods for creat-
ing children but generally they involve crossovers, requiring two parents, and mutations, requiring
a single parent. A selection function then determines which individuals survive to the next gen-
eration. The functions may have some dependence on the fitness of the individuals or may be
completely random. Elitist implementations always keep the fittest individual (or lowest cost so-
lution, in this case) during selection. The size of the population and number of generations are
important parameters in the algorithm.

Genetic algorithms are stochastic iterative processes that are not guaranteed to converge. The
termination criteria must be set at some fitness level or a fixed number of generations. The
implementation used in Solar Sail Module is GAOT [3]; the supporting functions are included
in the GAOT folder. GAMin is a wrapper for GAOT that is specific to function minimization.
GeneticAlgorithm is another implementation based on an article by Sipper 1.

Simulated Annealing

Simulated annealing [5, 10] is a global optimization method based on the an analogy with ther-
modynamics. Solar Sail Module implements Goffe’s algorithm in SimulatedAnnealing. At
high temperatures the molecules of a liquid move freely with respect to each other. If the liquid
is cooled slowly the thermal mobility is diminished and the atoms often can line themselves up in
ordered lattices that are billions of atoms in 3 dimensions. This is a minimum energy state and if
the cooling process is slow enough the crystal avoids falling into local minimums.

When minimizing a function, any downhill step is accepted and the process repeats from this new
point. An uphill step may be accepted using the Metropolis criteria as the basis for decision. Thus
simulated annealing process can escape from a local minimum. At each temperature the process is
allowed to come to a new equilibrium.

The Metropolis criteria is an exponential function. It is computed for a given temperature. A
random number is generated and compared against the value of the exponential.

As the optimization process proceeds, and temperature decreases, the length of the steps decline
and the algorithm closes in on the global optimum.

9.3.2 Function Overview

The optimization functions and demos as listed in the Contents files are shown below.
>> help Optimization

1Sipper, M., “A Brief Introduction to Genetic Algorithms,” http://www.cs.bgu.ac.il/ sipper/ga.html

100

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

Sail/Optimization

B
BoundedMutation - GA mutation function where change is bounded

within a fraction of the range.

C
ControlAngles3D - Computes the control angles for a 3D problem

given the costates of the
Cost3D - Function to be used for optimization. It

computes an err magnitude
CostLowThrust2D - Cost function for 2D low thrust trajectory

optimization.
CostLowThrust3D - Cost function for 3D low thrust trajectory

optimization.
CostSail2D - Cost function for 2D solar sail trajectory

optimization.
CostSail3D - Cost function for 3D solar sail trajectory

optimization.

F
FLambdaToConeClock - Generates the optimal cone and clock angles

for 3D problems.
FLowThrust2D - This function is for the planar orbit

problem which includes
FLowThrust3D - This function is 3D orbit problem in

equinoctial coordinates.
FSolarSailAngles - RHS for a Newton solver for sail angles.
FractionalSelection - GA selection function where a fixed fraction

of the population survives.

G
GAMin - Applies a genetic algorithm to minimizing a

function.
GeneticAlgorithm - Applies a genetic algorithm to minimizing

fun.

N
NewtonSolver - Solves for the zeros of a set of n equations

.

S
SimulatedAnnealing - Implements simulated annealing.
SingleCrossover - GA crossover function which switches a

randomly selected parameter between

T
TrajectoryOptimization - Performs trajectory optimization.

Demos/Optimization

L
LocallyOptimalTrajectories - Demonstrate locally optimal trajectories

. Uses equinoctial elements.

101

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

N
NLEqSADemo - Test a nonlinear equation solver for

computing cone and clock.

O
Optimization - Demonstrate the trajectory optimization

function for low thrust.
OptimizationTestGrid - Do 10 tests on GAOT, simulated annealing

and downhill simplex.

P
PlotDeJong - Plot the 5 De Jong functions.
PropagationDemo - Orbit propagation test.

S
Sail2DOptimization - Demonstrate the Trajectory optimization

function for sails in 2D orbits.
Sail3DOptimization - Demonstrate 3D optimization.

Z
ZermeloCostDemo - Compute the Zermelo cost function as a

function of lambda.
ZermeloOptimization - Demonstrate the Trajectory optimization

using the Zermelo problem

9.3.3 Formulation of the Problem

TrajectoryOptimization uses the indirect method of optimization [9]. The general prob-
lem for a single stage optimization problem is to minimize the cost function

J = φ(x(tf), tf) +
∫ tf

t0
L(x, u, t)dt (9.5)

subject to the dynamical equations
ẋ = f(x, u, t) (9.6)

where φ(x(tf), tf) is a cost associated with the final state, x and time, t. L(x, u, t) is the cost
associated with the state, time and control, u as the trajectory progresses. For a minimum time
problem, L is constant and equal to 1.

The dynamical equations are then appended to the cost functional by the Lagrange Multipliers, λ,
which are functions of the states and time and are also known as the costates. The actual cost does
not change since by definition the function multiplied by the costates is always zero. Additional
constraints can be added to the cost functional as needed by including one additional costate per
constraint. The cost function becomes

J = φ(x(tf), tf) +
∫ tf

t0
L(x, u, t)dt+ λ(t)T (f(x, u, t)− ẋ) (9.7)

The control Hamiltonian is defined as

H(x, λ, u, t) = L(x, u, t) + λ(t)Tf(x, u, t) (9.8)

102

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

= 1 + λ(t)Tf(x, u, t)

where we have substituted the minimum time value for L. The solution of the optimal control
problem requires the solution of the following equations

ẋ = f(x, u, t) (9.9)

λ̇(t)T = −∂H
∂x

(9.10)

∂H

∂u
= 0 (9.11)

If the final time is not constrained and the Hamiltonian is not an explicit function of time, then

H(t) = 0 (9.12)

We seek to solve the following boundary value problem. Boundary conditions are set for the state
equations in Eq. 9.6 on the facing page. Taking the partial of the Hamiltonian with respect to x in
Eq. 9.10, the costate equations become

λ̇ = −∂f
∂x

T

λ (9.13)

where the boundary conditions of the partials with respect to the vector x are unknown. The
optimality condition from Eq. 9.11 becomes

0 =
∂f

∂u

T

λ (9.14)

where the subscript denotes the partial with respect to the control vector u which provides a rela-
tionship between the controls and the costates.

The boundary conditions may be on the states or the costates. In the problems discussed in this
toolbox the initial conditions are always known. However, not all end conditions may be specified.
For those that are not specified the boundary condition on the costate is set to zero. If S is the set
of specified terminal boundary conditions then

xk(tf) = xk, k ∈ S (9.15)
λk(tf) = 0, k 3 S (9.16)

9.3.4 Zermelo’s Problem

Insight into issues of global optimization can be obtained by examining Zermelo’s problem. [1,
pages 77-79] Zermelo’s problem is a 2D trajectory problem of a vehicle at constant speed in a
velocity field in which the velocity is a function of position, for example a ship with a given
maximum speed moving through strong currents. The magnitude and direction of the currents in
each axis (u,v) are functions of the position: u(x, y) and v(x, y). The goal is to steer the ship to
find a minimum time trajectory between two points. An analytical solution is possible for the case

103

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

where only the current in the x-direction is non-zero and it is a linear function of the y position of
the vehicle. The equations of motion f are

ẋ = V cos θ + u(x, y) = V cos θ − V y
h

(9.17)

ẏ = V sin θ + v(x, y) = V sin θ

V is the velocity of the vehicle relative to the current which is constant and θ is the angle of the
vehicle relative to the x-axis and is the control in the problem. The problem has a characteristic
dimension of h. The Hamiltonian of the system is

H = λx(V cos θ + u) + λy(V sin θ + v) + 1 (9.18)

Applying the costate equations (Eq. 9.13 on the previous page), we first compute the partials of the
state equations,

∂f

∂x
=

[
0 −V/h
0 0

]
(9.19)

so applying the transpose to the partials matrix and substituting in we then have the costate deriva-
tives.

λ̇ = −
[

0 0

−V/h 0

] [
λx
λy

]
=

[
0

λx
V
h

]
(9.20)

We then compute the partials of the state equations with respect to the control,

∂f

∂u
=

[
−V sin θ

V cos θ

]
(9.21)

so that the control angle θ can then be computed from the optimality condition in Eq. 9.14 on the
preceding page.

[−V sin θ V cos θ]

[
λx
λy

]
= 0 (9.22)

tan θ =
λy
λx

The above equations are used for the indirect optimization method. We can also compute the
analytical solution for this problem when the final position is the origin (0,0). The optimal control
angle as a function of the current position is expressed as

y

h
= sec θ − sec θf (9.23)

x

h
= −1

2

[
sec θf (tan θf − tan θ)− tan θf (sec θf − sec θ) + log

tan θf + sec θf
tan θ + sec θ

]
(9.24)

where θf is the final control angle and log is loge. These equations enable us to solve for the initial
and final control angles θ0 and θf given an initial position. Note that this corrects a sign error in
the text.

104

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

These equations are implemented in the functions RHSZermelo, which computes the state and
costate derivatives, and ZermeloCost, which integrates the equations using ode113 and finds
the minimum distance to the desired end point. ZermeloCostDemo demonstrates the cost func-
tion for an example set of initial and final conditions and a range of costate values. The cost
function for solving Eq. 9.23 on the preceding page for the initial control angles and costates is
ZermeloAnalyticalCost. ZermeloOptimization shows how to set up the TrajectoryOptimization
framework for solving the problem using downhill simplex, and compares the results to the ana-
lytical solution.

For each method being tested the optimization parameters have been chosen, by a certain amount
of trial and error, to get the best results. The final λ vector is different in each case. However,
the control is determined by the ratio so the magnitudes are not important. Table 9.1 gives the
analytical and numerical solutions for the problem. The initial conditions are [3.66;−1.86] and the
final conditions are [0; 0].

Table 9.1. Solutions

Test λx λy Ratio
Analytical -0.5 1.866025 -0.26795
Simplex -0.65946 2.9404 -0.22428
Simulated Annealing -0.68652 2.4593 -0.27915
Genetic Algorithm -0.78899 2.9404 -0.26833

9.3.5 The Three Dimensional Equations of Motion

Now we will write the dynamical equations needed for optimization of a three-dimensional trajec-
tory problem. We will examine both low thrust and solar sail examples. We can compare the low
thrust results to standard results in the literature.

Cartesian

The cartesian equations are
ẍ+ µ

x

r3
= a (9.25)

where
r =

√
x2 + y2 + z2 (9.26)

Equinoctial

The three dimensional equations of motion in modified equinoctial coordinates are

p = a(1− e2) (9.27)
f = e cos(ω + Ω)

g = e sin(ω + Ω)

105

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

h = tan(i/2) cos Ω

k = tan(i/2) sin Ω

L = Ω + ω + ν

where p is the semiparameter, a is the semimajor axis, e is the orbital eccentricity, ω is the argument
of perigee, Ω is the right ascension of the ascending node, L is the true longitude and ν is the true
anomaly.

The dimensional dynamical equations are

ẋ = Gu+ b (9.28)

where the state vector is

x =



p

f

g

h

k

L

m


(9.29)

where m is the mass

G =



0 2rω 0

ωs ω(γc+ f)/q −Ωg

−ωc ω(γs+ g)/q −Ωf

0 0 ζc

0 0 ζs

0 0 Ω

0 0 0


(9.30)

and

b =



0

0

0

0

0√
µp
r2

− T
ue


(9.31)

where

r =
p

q
(9.32)

c = cosL (9.33)
s = sinL (9.34)
z = hs− kc (9.35)

106

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

ω =

√
p

µ
(9.36)

q = 1 + fc+ gs (9.37)
γ = q + 1 (9.38)

Ω = ω
z

q
(9.39)

ζ =
1

2

ω

q
(1 +

√
h2 + k2) (9.40)

a is the acceleration vector with components in the radial, tangential and normal directions. If the
accelerations are zero, only L changes. The last equation is for the mass flow of the thruster.

If we define the control acceleration vector as

u = a

 cosα cos β

sinα cos β

sin β

 (9.41)

then

U =

 − sinα cos β − cosα sin β

cosα cos β − sinα sin β

0 cos β

 (9.42)

Then the optimality condition becomes

0 = UTGTλ (9.43)

which is two equations in two unknowns, α and β.

9.3.6 Low-thrust Mars Rendezvous

The Mars rendezvous mission starts at a fixed time and attempts to rendezvous with Mars in the
shortest possible time. The Mars trajectory is propagated so the final boundary conditions will
depend on the time of intercept. Rendezvous problems can be formulated in cartesian coordi-
nates since all six states must match the target states at the end. This is also the built-in demo of
TrajectoryOptimization.

The demo setup is below. The demo is 2D, since Earth and Mars are very nearly in the same plane.
The functions used are FLowThrust2D, CostLowThrust2D, and Plot2DTrajectory.
Low-thrust is a simpler problem than sail optimization, since the thrust can be in any direction,
not just opposed to the sun line, so it is a good test of the optimization functions.

% Demo
%-----
if(nargin < 1)

% Low-thrust Mars trajectory
disp(’Low-thrust Mars demo using Simplex’)
d.method = ’downhill simplex’;

107

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

d.repeat = 1;
lbFToKg = Constant(’lb force to kg’);
aU = Constant(’au’);
secInDay = 86400;
d.d.m0 = 10000*lbFToKg; % kg
[name,a] = Planets(’rad’,4); % Mars
d.d.mu = Constant(’mu sun’);
d.d.rF = a(1)*aU;
d.d.mDot = 6.7727e-5;
d.d.thrust = 0.002;
d.d.rhsFun = ’FLowThrust2D’;
d.d.plotFun = ’Plot2DTrajectory’;
d.d.stateTol = 1e-4;
d.d.funTol = 1e-4;
d.d.nIts = 600;
d.d.costFun = ’CostLowThrust2D’;
d.d.lambda0 = [0;0.1;1];
d.d.x0 = [149597870;0;29.78469;4535.9237];
d.d.xF = [227936636.17;0;24.1295];
d.d.data.absTol = 1e-10;
d.d.data.relTol = 2.5e-8;
d.d.data.maxStep = 0.1;
d.d.tEnd = 300*secInDay;
d.d.errorScale = [1; 3e6; 1e7; 1e-2];

[lambda,xF,tF] = TrajectoryOptimization(d);
disp(’Initial costate guess:’)
disp(d.d.lambda0)
disp(’Costate returned by Simplex:’)
disp(lambda{1})
clear lambda
return;

end

This produces the following output.

Low-thrust Mars demo using Simplex
Case 1: Method: downhill simplex

Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
Current function value: 212174.582193

Radial position error = -72772.1819 (km)
Radial velocity error = -0.0655 (km/s)
Tangential velocity error = -0.0016 (km/s)

Time of minimum error = 251.8840 days
Initial costate guess:

0

108

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

0.1
1

Costate returned by Simplex:
1.0999e-07

0.16811
0.70176

The resulting trajectory is in Figure 9.7.

Figure 9.7. Low-thrust Mars rendezvous

Trajectory: 2D Trajectory

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

y
()

x ()

 0.0 days

 72.3 days

 96.4 days115.7 days128.9 days
140.7 days

154.3 days

171.6 days

195.5 days

251.9 days

Trajectory: Elements

0 50 100 150 200 250 300
0.8

1

1.2

1.4

1.6

a
(a

u)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

e

Time (days)

Trajectory: Errors

0 50 100 150 200 250 300
0

2

4

6

8
x 10

7

r
(k

m
)

0 50 100 150 200 250 300
−5

0

5

10

v r (
km

/s
)

0 50 100 150 200 250 300
0

2

4

6

8

v t (
km

/s
)

Time (days)

Trajectory: Mass

0 50 100 150 200 250 300
3000

3200

3400

3600

3800

4000

4200

4400

4600

M
as

s

Time (days)

9.3.7 Sail 2D Optimization Examples

Sail2DOptimization contains two different examples, an Earth-Mars transfer and the planar
portion of a Solar Polar Imager trajectory (reduction in semi-major axis from 1 AU to 0.48 AU).
For each example, the demo can run either simplex or a genetic algorithm. The desired endpoint is
a circular orbit at the new radius; the demo does not assure a rendezvous with Mars. The support-
ing functions are TwoDOptimalSailAngle RHSOpt2DOrbit, Plot2DTrajectory, and

109

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

CostSail2D. Simplex runs quite quickly for both cases. TwoDOptimalSailAngle gives the
sail angle found by solving the combined state and costate equations for a purely specular sail in
2D radial coordinates.

The SPI results using simplex are shown below and in Figure 9.8 on the facing page. The transfer
time to 0.48 AU is 1.74 years.

Case 1: Method: downhill simplex
Radial position error = 33009.4317 (km)
Radial velocity error = 0.0239 (km/s)
Tangential velocity error = -0.0175 (km/s)

Time of minimum error = 1.7414 years
Costates for Simplex

0.1025
28760

5.5646e+05

The Mars results using simplex are shown below and in Figure 9.8 on the next page. The transfer
time is 2.4 years. It is much longer than the SPI transfer because the force produced by the sail is
diminishing as the sail gets further from the sun.

Case 1: Method: downhill simplex
Radial position error = 696.5657 (km)
Radial velocity error = 0.0089 (km/s)
Tangential velocity error = -0.0161 (km/s)

Time of minimum error = 2.4188 years
Costates for Simplex

-0.0038444
-9640.8
-17466

9.3.8 Heliopause Mission

The IHP trajectory is defined by a spacecraft delivery to the nose of the heliosphere in less than 25
years (located at 200 AU with latitude/elevation 7.5 deg, longitude/azimuth 254 deg in the ecliptic
coordinate frame). The sail is jetisoned at 5 AU and there is a 0.25 AU minimal radius constraint
for the solar sail assist[4].

110

CHAPTER 9. TRAJECTORY OPTIMIZATION 9.3. GLOBAL CONTROL

Figure 9.8. 2D SPI solved using simplex

Trajectory: 2D Trajectory

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y
()

x ()

 0.0 years

 0.4 years

 0.6 years

 0.7 years

 0.8 years

 1.1 years

 1.2 years

 1.4 years

 1.6 years

 1.7 years

 1.7 years

Trajectory: Errors

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8
x 10

7

r
(k

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−4

−2

0

2

v r (
km

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

v t (
km

/s
)

Time (years)

Trajectory: Elements

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

a
(a

u)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.02

0.04

0.06

0.08

0.1

0.12

e

Time (years)

111

9.3. GLOBAL CONTROL CHAPTER 9. TRAJECTORY OPTIMIZATION

Figure 9.9. 2D Mars solved using simplex

Trajectory: 2D Trajectory

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y
()

x ()

 0.0 years

 0.2 years
 0.4 years

 0.6 years

 1.1 years

 1.3 years

 1.4 years

 1.6 years
 1.8 years

 2.4 years

Trajectory: Errors

0 0.5 1 1.5 2 2.5
0

2

4

6

8
x 10

7

r
(k

m
)

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

v r (
km

/s
)

0 0.5 1 1.5 2 2.5
0

2

4

6

v t (
km

/s
)

Time (years)

Trajectory: Elements

0 0.5 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

a
(a

u)

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

e

Time (years)

112

BIBLIOGRAPHY

[1] A. Bryson and Y. Ho. Applied Optimal Control. Hemisphere Publishing Company, 1975.

[2] Jr. Carl G. Sauer. The l1 diamond affair. 2004 Spaceflight Mechanics Conference, (AAS
04-278), February 2004.

[3] Michael G. Kay Christopher R. Houck, Jeffery A. Joines. A genetic algorithm for func-
tion optimization: A matlab implementation. Technical Report NCSU-IE TR 95-09, North
Carolina State University, 1995.

[4] Remi Drai. Email. ESA-ESTEC, November 2005.

[5] William Goffe. Simulated annealing - global optimization method that distinguishes between
different local optima.

[6] W. W. Hooker. A set of r dynamical attitude equations for an arbitrary n-body satellite having
r rotational degrees of freedom. AIAA Journal, 8:1205–1207, July 1970.

[7] C. R. McInnes. Solar Sailing. Springer, 1999.

[8] J. A. Nelder and Mead R. Downhill simplex. Computer Journal, 7(2):308–313, 1965.

[9] M. Paluszek and S. Thomas. Trajectory optimization using global methods. In presented at
the second “New Trends in Astrodynamics and Applications” conference, number IEPC05-
173, Princeton, NJ, November 2005. IEPC.

[10] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
Recipes. Cambridge University Press, 1980.

[11] Moshe Sipper. A brief introduction to genetic algorithms. http://www.cs.bgu.ac.il/ sip-
per/ga.html, 1996.

113

BIBLIOGRAPHY BIBLIOGRAPHY

114

	Introduction
	Solar Sails
	Organization
	Requirements
	Installation
	Getting Started

	Sail Coordinates
	Function Overview
	Cone and Clock Angles
	Visualization
	Gimballed Boom Coordinates

	Building a Sail Model
	Function overview
	Creating a sail mesh
	Defining the sail components
	Storing and retrieving sail models
	Sail configurations
	Flat Plate
	Sails with flat components
	Striped Sail

	Disturbances
	Function Overview
	Solar pressure force function
	Environment Function
	Disturbance Function
	Profile Data Structure
	SailDisturbance Demo

	Attitude Dynamics
	Function Overview
	Rigid Body Dynamics
	General Two-Body Dynamics
	Fixed Rate Rotating and Translating Bodies
	Time Varying Inertia
	Special Two-Gimbal Model for a Boom
	Dynamical Equations
	Two Body Functions
	Example

	Sail Attitude Actuators
	Sliding Masses
	Vanes
	Gimballed Boom

	Orbit Dynamics and Ephemeris
	Function Overview
	Orbit Dynamics
	Combined right-hand-side
	Specialized Coordinate Systems

	Ephemeris

	Analysis
	Creating a CAD Model
	Performing a Disturbance Analysis
	Simulating the Attitude Dynamics
	Boom Control Demo
	Heliopause Guidance Mission Demo
	Integrated Guidance and Attitude Control

	Trajectory Optimization
	Introduction
	Local Control
	Global Control
	Global Methods
	Function Overview
	Formulation of the Problem
	Zermelo's Problem
	The Three Dimensional Equations of Motion
	Low-thrust Mars Rendezvous
	Sail 2D Optimization Examples
	Heliopause Mission

